Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 May;105(1):15–18. doi: 10.1104/pp.105.1.15

Molecular Modeling Indicates that Two Chemically Distinct Classes of Anti-Mitotic Herbicide Bind to the Same Receptor Site(s).

J R Ellis 1, R Taylor 1, P J Hussey 1
PMCID: PMC159324  PMID: 12232182

Abstract

Dinitroaniline and phosphorothioamidate herbicides disrupt microtubule assembly from tubulin protein dimers and thereby halt microtubule-based processes such as mitosis in plant cells. Despite the contrasting chemical properties of dinitroaniline and phosphorothioamidate herbicides, a three-dimensional molecular analysis revealed remarkable electrostatic similarity between these two classes of herbicide. From these data it is proposed that dinitroaniline and phosphorothioamidate herbicides share common binding site(s) in the plant cell.

Full Text

The Full Text of this article is available as a PDF (867.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajer A. S., Molè-Bajer J. Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubules. Ann N Y Acad Sci. 1986;466:767–784. doi: 10.1111/j.1749-6632.1986.tb38458.x. [DOI] [PubMed] [Google Scholar]
  2. Bolduc C., Lee V. D., Huang B. Beta-tubulin mutants of the unicellular green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1988 Jan;85(1):131–135. doi: 10.1073/pnas.85.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryan J., Wilson L. Are cytoplasmic microtubules heteropolymers? Proc Natl Acad Sci U S A. 1971 Aug;68(8):1762–1766. doi: 10.1073/pnas.68.8.1762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cabral F., Barlow S. B. Mechanisms by which mammalian cells acquire resistance to drugs that affect microtubule assembly. FASEB J. 1989 Mar;3(5):1593–1599. doi: 10.1096/fasebj.3.5.2646163. [DOI] [PubMed] [Google Scholar]
  5. Hess F. D., Bayer D. E. Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J Cell Sci. 1977 Apr;24:351–360. doi: 10.1242/jcs.24.1.351. [DOI] [PubMed] [Google Scholar]
  6. Hugdahl J. D., Morejohn L. C. Rapid and Reversible High-Affinity Binding of the Dinitroaniline Herbicide Oryzalin to Tubulin from Zea mays L. Plant Physiol. 1993 Jul;102(3):725–740. doi: 10.1104/pp.102.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. James S. W., Silflow C. D., Stroom P., Lefebvre P. A. A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides. J Cell Sci. 1993 Sep;106(Pt 1):209–218. doi: 10.1242/jcs.106.1.209. [DOI] [PubMed] [Google Scholar]
  8. Lee V. D., Huang B. Missense mutations at lysine 350 in beta 2-tubulin confer altered sensitivity to microtubule inhibitors in Chlamydomonas. Plant Cell. 1990 Nov;2(11):1051–1057. doi: 10.1105/tpc.2.11.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Morejohn L. C., Fosket D. E. Inhibition of Plant Microtubule Polymerization in vitro by the Phosphoric Amide Herbicide Amiprophos-Methyl. Science. 1984 May 25;224(4651):874–876. doi: 10.1126/science.224.4651.874. [DOI] [PubMed] [Google Scholar]
  10. Page R. C., Sims T. J., Geissler F., Altman L. C., Baab D. A. Abnormal leukocyte motility in patients with early-onset periodontitis. J Periodontal Res. 1984 Nov;19(6):591–594. doi: 10.1111/j.1600-0765.1984.tb01321.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES