Abstract
Nonspecific lipid transfer proteins (LTPs) from plants are characterized by their ability to stimulate phospholipid transfer between membranes in vitro. However, because these proteins are generally located outside of the plasma membrane, it is unlikely that they have a similar role in vivo. As a step toward identifying the function of these proteins, one of several LTP genes from Arabidoposis has been cloned and the expression pattern of the gene has been examined by analysis of the tissue specificity of beta-glucuronidase (GUS) activity in transgenic plants containing LTP promoter-GUS fusions and by in situ mRNA localization. The LTP1 promoter was active early in development in protoderm cells of embryos, vascular tissues, lignified tips of cotyledons, shoot meristem, and stipules. In adult plants, the gene was expressed in epidermal cells of young leaves and the stem. In flowers, expression was observed in the epidermis of all developing influorescence and flower organ primordia, the epidermis of the siliques and the outer ovule wall, the stigma, petal tips, and floral nectaries of mature flowers, and the petal/sepal abscission zone of mature siliques. The presence of GUS activity in guard cells, lateral roots, pollen grains, leaf vascular tissue, and internal cells of stipules and nectaries was not confirmed by in situ hybridizations, supporting previous observations that suggest that the reporter gene is subject to artifactual expression. These results are consistent with a role for the LTP1 gene product in some aspect of secretion or deposition of lipophilic substances in the cell walls of expanding epidermal cells and certain secretory tissues. The LTP1 promoter region contained sequences homologous to putative regulatory elements of genes in the phenylpropanoid biosynthetic pathway, suggesting that the expression of the LTP1 gene may be regulated by the same or similar mechanisms as genes in the phenylpropanoid pathway.
Full Text
The Full Text of this article is available as a PDF (3.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dieryck W., Gautier M. F., Lullien V., Joudrier P. Nucleotide sequence of a cDNA encoding a lipid transfer protein from wheat (Triticum durum Desf.). Plant Mol Biol. 1992 Jul;19(4):707–709. doi: 10.1007/BF00026798. [DOI] [PubMed] [Google Scholar]
- Drews G. N., Beals T. P., Bui A. Q., Goldberg R. B. Regional and cell-specific gene expression patterns during petal development. Plant Cell. 1992 Nov;4(11):1383–1404. doi: 10.1105/tpc.4.11.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleming A. J., Mandel T., Hofmann S., Sterk P., de Vries S. C., Kuhlemeier C. Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J. 1992 Nov;2(6):855–862. [PubMed] [Google Scholar]
- Hoshino E., Kanda T., Sasaki Y., Nisizawa K. Adsorption mode of exo- and endo-cellulases from Irpex lacteus (Polyporus tulipiferae) on cellulose with different crystallinities. J Biochem. 1992 May;111(5):600–605. doi: 10.1093/oxfordjournals.jbchem.a123804. [DOI] [PubMed] [Google Scholar]
- Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joshi C. P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 1987 Aug 25;15(16):6643–6653. doi: 10.1093/nar/15.16.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kader J. C., Julienne M., Vergnolle C. Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem. 1984 Mar 1;139(2):411–416. doi: 10.1111/j.1432-1033.1984.tb08020.x. [DOI] [PubMed] [Google Scholar]
- Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linnestad C., Lönneborg A., Kalla R., Olsen O. A. Promoter of a Lipid Transfer Protein Gene Expressed in Barley Aleurone Cells Contains Similar myb and myc Recognition Sites as the Maize Bz-McC Allele. Plant Physiol. 1991 Oct;97(2):841–843. doi: 10.1104/pp.97.2.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meijer E. A., de Vries S. C., Sterk P., Gadella D. W., Jr, Wirtz K. W., Hendriks T. Characterization of the non-specific lipid transfer protein EP2 from carrot (Daucus carota L.). Mol Cell Biochem. 1993 Jun 9;123(1-2):159–166. doi: 10.1007/BF01076488. [DOI] [PubMed] [Google Scholar]
- Molina A., Segura A., García-Olmedo F. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett. 1993 Jan 25;316(2):119–122. doi: 10.1016/0014-5793(93)81198-9. [DOI] [PubMed] [Google Scholar]
- Ohl S., Hedrick S. A., Chory J., Lamb C. J. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell. 1990 Sep;2(9):837–848. doi: 10.1105/tpc.2.9.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plant A. L., Cohen A., Moses M. S., Bray E. A. Nucleotide sequence and spatial expression pattern of a drought- and abscisic Acid-induced gene of tomato. Plant Physiol. 1991 Nov;97(3):900–906. doi: 10.1104/pp.97.3.900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smyth D. R., Bowman J. L., Meyerowitz E. M. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. doi: 10.1105/tpc.2.8.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sossountzov L., Ruiz-Avila L., Vignols F., Jolliot A., Arondel V., Tchang F., Grosbois M., Guerbette F., Miginiac E., Delseny M. Spatial and temporal expression of a maize lipid transfer protein gene. Plant Cell. 1991 Sep;3(9):923–933. doi: 10.1105/tpc.3.9.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sterk P., Booij H., Schellekens G. A., Van Kammen A., De Vries S. C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell. 1991 Sep;3(9):907–921. doi: 10.1105/tpc.3.9.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tchang F., This P., Stiefel V., Arondel V., Morch M. D., Pages M., Puigdomenech P., Grellet F., Delseny M., Bouillon P. Phospholipid transfer protein: full-length cDNA and amino acid sequence in maize. Amino acid sequence homologies between plant phospholipid transfer proteins. J Biol Chem. 1988 Nov 15;263(32):16849–16855. [PubMed] [Google Scholar]
- Terras F. R., Goderis I. J., Van Leuven F., Vanderleyden J., Cammue B. P., Broekaert W. F. In Vitro Antifungal Activity of a Radish (Raphanus sativus L.) Seed Protein Homologous to Nonspecific Lipid Transfer Proteins. Plant Physiol. 1992 Oct;100(2):1055–1058. doi: 10.1104/pp.100.2.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thoma S., Kaneko Y., Somerville C. A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J. 1993 Mar;3(3):427–436. doi: 10.1046/j.1365-313x.1993.t01-25-00999.x. [DOI] [PubMed] [Google Scholar]
- Torres-Schumann S., Godoy J. A., Pintor-Toro J. A. A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol Biol. 1992 Feb;18(4):749–757. doi: 10.1007/BF00020016. [DOI] [PubMed] [Google Scholar]
- Tsuboi S., Suga T., Takishima K., Mamiya G., Matsui K., Ozeki Y., Yamada M. Organ-specific occurrence and expression of the isoforms of nonspecific lipid transfer protein in castor bean seedlings, and molecular cloning of a full-length cDNA for a cotyledon-specific isoform. J Biochem. 1991 Nov;110(5):823–831. doi: 10.1093/oxfordjournals.jbchem.a123666. [DOI] [PubMed] [Google Scholar]
- Uknes S., Dincher S., Friedrich L., Negrotto D., Williams S., Thompson-Taylor H., Potter S., Ward E., Ryals J. Regulation of pathogenesis-related protein-1a gene expression in tobacco. Plant Cell. 1993 Feb;5(2):159–169. doi: 10.1105/tpc.5.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]