Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 May;105(1):233–241. doi: 10.1104/pp.105.1.233

Brassica napus plastid and mitochondrial chaperonin-60 proteins contain multiple distinct polypeptides.

L P Cloney 1, D R Bekkaoui 1, G L Feist 1, W S Lane 1, S M Hemmingsen 1
PMCID: PMC159350  PMID: 7913238

Abstract

Plastid chaperonin-60 protein was purified to apparent homogeneity from Brassica napus using a novel protocol. The purified protein, which migrated as a single species by nondenaturing polyacrylamide gel electrophoresis, contained four polypeptides: three variants of p60cpn60 alpha and p60cpn60 beta. Partial amino acid sequence determination demonstrated that each variant of p60cpn60 alpha is a distinct translation product. During this study, additional chaperonin-60 proteins were purified. These proteins, which were free from contaminating plastid chaperonin-60, were separated into at least two high molecular weight species that were resolved only by nondenaturing polyacrylamide gel electrophoresis. These proteins contained three 60-kD polypeptides. Two of these polypeptides were recognized by existing antisera, whereas the third was not. Partial amino acid sequence data revealed that each of these, including the immunologically distinct polypeptide, is a chaperonin-60 subunit of putative mitochondrial origin. The behavior of chaperonin-60 proteins during blue A Dyematrex chromatography suggests that this matrix may be generally useful for the identification of chaperonin-60 proteins.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold R. H., Leavitt J., Saavedra R. A., Hood L. E., Kent S. B. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6970–6974. doi: 10.1073/pnas.84.20.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bertsch U., Soll J., Seetharam R., Viitanen P. V. Identification, characterization, and DNA sequence of a functional "double" groES-like chaperonin from chloroplasts of higher plants. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8696–8700. doi: 10.1073/pnas.89.18.8696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Chandrasekhar G. N., Tilly K., Woolford C., Hendrix R., Georgopoulos C. Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem. 1986 Sep 15;261(26):12414–12419. [PubMed] [Google Scholar]
  5. Cheng M. Y., Hartl F. U., Horwich A. L. The mitochondrial chaperonin hsp60 is required for its own assembly. Nature. 1990 Nov 29;348(6300):455–458. doi: 10.1038/348455a0. [DOI] [PubMed] [Google Scholar]
  6. Cloney L. P., Bekkaoui D. R., Wood M. G., Hemmingsen S. M. Assessment of plant chaperonin-60 gene function in Escherichia coli. J Biol Chem. 1992 Nov 15;267(32):23333–23336. [PubMed] [Google Scholar]
  7. Cloney L. P., Wu H. B., Hemmingsen S. M. Expression of plant chaperonin-60 genes in Escherichia coli. J Biol Chem. 1992 Nov 15;267(32):23327–23332. [PubMed] [Google Scholar]
  8. Ellis R. J., van der Vies S. M. Molecular chaperones. Annu Rev Biochem. 1991;60:321–347. doi: 10.1146/annurev.bi.60.070191.001541. [DOI] [PubMed] [Google Scholar]
  9. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  10. Hemmingsen S. M., Ellis R. J. Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein. Plant Physiol. 1986 Jan;80(1):269–276. doi: 10.1104/pp.80.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hemmingsen S. M., Woolford C., van der Vies S. M., Tilly K., Dennis D. T., Georgopoulos C. P., Hendrix R. W., Ellis R. J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988 May 26;333(6171):330–334. doi: 10.1038/333330a0. [DOI] [PubMed] [Google Scholar]
  12. Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987 Sep 17;329(6136):219–222. doi: 10.1038/329219a0. [DOI] [PubMed] [Google Scholar]
  13. Lane W. S., Galat A., Harding M. W., Schreiber S. L. Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus. J Protein Chem. 1991 Apr;10(2):151–160. doi: 10.1007/BF01024778. [DOI] [PubMed] [Google Scholar]
  14. Martel R., Cloney L. P., Pelcher L. E., Hemmingsen S. M. Unique composition of plastid chaperonin-60: alpha and beta polypeptide-encoding genes are highly divergent. Gene. 1990 Oct 15;94(2):181–187. doi: 10.1016/0378-1119(90)90385-5. [DOI] [PubMed] [Google Scholar]
  15. Mendoza J. A., Lorimer G. H., Horowitz P. M. Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures. J Biol Chem. 1992 Sep 5;267(25):17631–17634. [PubMed] [Google Scholar]
  16. Mendoza J. A., Rogers E., Lorimer G. H., Horowitz P. M. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J Biol Chem. 1991 Jul 15;266(20):13044–13049. [PubMed] [Google Scholar]
  17. Miller S. G., Leclerc R. F., Erdos G. W. Identification and characterization of a testis-specific isoform of a chaperonin in a moth, Heliothis virescens. J Mol Biol. 1990 Jul 20;214(2):407–422. doi: 10.1016/0022-2836(90)90190-W. [DOI] [PubMed] [Google Scholar]
  18. Musgrove J. E., Johnson R. A., Ellis R. J. Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits. Eur J Biochem. 1987 Mar 16;163(3):529–534. doi: 10.1111/j.1432-1033.1987.tb10900.x. [DOI] [PubMed] [Google Scholar]
  19. Reading D. S., Hallberg R. L., Myers A. M. Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature. 1989 Feb 16;337(6208):655–659. doi: 10.1038/337655a0. [DOI] [PubMed] [Google Scholar]
  20. Tsuprun V. L., Boekema E. J., Samsonidze T. G., Pushkin A. V. Electron microscopy of the complexes of ribulose-1,5-bisphosphate carboxylase (Rubisco) and Rubisco subunit-binding protein from pea leaves. FEBS Lett. 1991 Sep 9;289(2):205–209. doi: 10.1016/0014-5793(91)81070-o. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES