Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 May;105(1):243–251. doi: 10.1104/pp.105.1.243

Pr-specific phytochrome phosphorylation in vitro by a protein kinase present in anti-phytochrome maize immunoprecipitates.

B J Biermann 1, L I Pao 1, L J Feldman 1
PMCID: PMC159351  PMID: 11536638

Abstract

Protein kinase activity has repeatedly been found to co-purify with the plant photoreceptor phytochrome, suggesting that light signals received by phytochrome may be transduced or modulated through protein phosphorylation. In this study immunoprecipitation techniques were used to characterize protein kinase activity associated with phytochrome from maize (Zea mays L.). A protein kinase that specifically phosphorylated phytochrome was present in washed anti-phytochrome immunoprecipitates of etiolated coleoptile proteins. No other substrate tested was phosphorylated by this kinase. Adding salts or detergents to disrupt low-affinity protein interactions reduced background phosphorylation in immunoprecipitates without affecting phytochrome phosphorylation, indicating that the protein kinase catalytic activity is either intrinsic to the phytochrome molecule or associated with it by high-affinity interactions. Red irradiation (of coleoptiles or extracts) sufficient to approach photoconversion saturation reduced phosphorylation of immunoprecipitated phytochrome. Subsequent far-red irradiation reversed the red-light effect. Phytochrome phosphorylation was stimulated about 10-fold by a co-immunoprecipitated factor. The stimulatory factor was highest in immunoprecipitates when Mg2+ was present in immunoprecipitation reactions but remained in the supernatant in the absence of Mg2+. These observations provide strong support for the hypothesis that phytochrome-associated protein kinase modulates light responses in vivo. Since only phytochrome was found to be phosphorylated, the co-immunoprecipitated protein kinase may function to regulate receptor activity.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Briggs W. R., Chon H. P. The physiological versus the spectrophotometric status of phytochrome in corn coleoptiles. Plant Physiol. 1966 Sep;41(7):1159–1166. doi: 10.1104/pp.41.7.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buczyłko J., Gutmann C., Palczewski K. Regulation of rhodopsin kinase by autophosphorylation. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2568–2572. doi: 10.1073/pnas.88.6.2568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cherry J. R., Hondred D., Walker J. M., Vierstra R. D. Phytochrome requires the 6-kDa N-terminal domain for full biological activity. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5039–5043. doi: 10.1073/pnas.89.11.5039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chory J., Peto C. A., Ashbaugh M., Saganich R., Pratt L., Ausubel F. Different Roles for Phytochrome in Etiolated and Green Plants Deduced from Characterization of Arabidopsis thaliana Mutants. Plant Cell. 1989 Sep;1(9):867–880. doi: 10.1105/tpc.1.9.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Datta N., Chen Y. R., Roux S. J. Phytochrome and calcium stimulation of protein phosphorylation in isolated pea nuclei. Biochem Biophys Res Commun. 1985 May 16;128(3):1403–1408. doi: 10.1016/0006-291x(85)91096-4. [DOI] [PubMed] [Google Scholar]
  6. Deng X. W., Caspar T., Quail P. H. cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 1991 Jul;5(7):1172–1182. doi: 10.1101/gad.5.7.1172. [DOI] [PubMed] [Google Scholar]
  7. Draetta G., Luca F., Westendorf J., Brizuela L., Ruderman J., Beach D. Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell. 1989 Mar 10;56(5):829–838. doi: 10.1016/0092-8674(89)90687-9. [DOI] [PubMed] [Google Scholar]
  8. Fallon K. M., Shacklock P. S., Trewavas A. J. Detection in Vivo of Very Rapid Red Light-Induced Calcium-Sensitive Protein Phosphorylation in Etiolated Wheat (Triticum aestivum) Leaf Protoplasts. Plant Physiol. 1993 Mar;101(3):1039–1045. doi: 10.1104/pp.101.3.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feldman L. J., Briggs W. R. Light-regulated gravitropism in seedling roots of maize. Plant Physiol. 1987;83:241–243. doi: 10.1104/pp.83.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feldman L. J., Piechulla B., Sun P. S. Light-regulated protein and mRNA synthesis in root caps of maize. Plant Mol Biol. 1988;11:27–34. [PubMed] [Google Scholar]
  11. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Mandoli D. F., Briggs W. R. Phytochrome control of two low-irradiance responses in etiolated oat seedlings. Plant Physiol. 1981 Apr;67(4):733–739. doi: 10.1104/pp.67.4.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McMichael R. W., Jr, Lagarias J. C. Phosphopeptide mapping of Avena phytochrome phosphorylated by protein kinases in vitro. Biochemistry. 1990 Apr 24;29(16):3872–3878. doi: 10.1021/bi00468a011. [DOI] [PubMed] [Google Scholar]
  15. Romero L. C., Lam E. Guanine nucleotide binding protein involvement in early steps of phytochrome-regulated gene expression. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1465–1469. doi: 10.1073/pnas.90.4.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Romero L. C., Sommer D., Gotor C., Song P. S. G-proteins in etiolated Avena seedlings. Possible phytochrome regulation. FEBS Lett. 1991 May 6;282(2):341–346. doi: 10.1016/0014-5793(91)80509-2. [DOI] [PubMed] [Google Scholar]
  17. Sarokin L. P., Chua N. H. Binding sites for two novel phosphoproteins, 3AF5 and 3AF3, are required for rbcS-3A expression. Plant Cell. 1992 Apr;4(4):473–483. doi: 10.1105/tpc.4.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wittenberg C., Sugimoto K., Reed S. I. G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell. 1990 Jul 27;62(2):225–237. doi: 10.1016/0092-8674(90)90361-h. [DOI] [PubMed] [Google Scholar]
  19. Wong Y. S., Cheng H. C., Walsh D. A., Lagarias J. C. Phosphorylation of Avena phytochrome in vitro as a probe of light-induced conformational changes. J Biol Chem. 1986 Sep 15;261(26):12089–12097. [PubMed] [Google Scholar]
  20. Wong Y. S., Lagarias J. C. Affinity labeling of Avena phytochrome with ATP analogs. Proc Natl Acad Sci U S A. 1989 May;86(10):3469–3473. doi: 10.1073/pnas.86.10.3469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wong Y. S., McMichael R. W., Lagarias J. C. Properties of a polycation-stimulated protein kinase associated with purified Avena phytochrome. Plant Physiol. 1989 Oct;91(2):709–718. doi: 10.1104/pp.91.2.709. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES