Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 May;105(1):269–277. doi: 10.1104/pp.105.1.269

Expression of lipoxygenase in wounded tubers of Solanum tuberosum L.

A Geerts 1, D Feltkamp 1, S Rosahl 1
PMCID: PMC159354  PMID: 8029354

Abstract

A lipoxygenase cDNA clone from Solanum tuberosum L. was analyzed to study the role of lipoxygenases in potato development and wound response. Sequence analysis and comparison of the deduced amino acid sequence revealed high homology to other plant lipoxygenases. Expression of the cDNA sequences in Escherichia coli and subsequent analysis of bacterial protein extracts showed lipoxygenase activity using linoleic, linolenic, or arachidonic acid as substrates. Transcripts encoding the potato lipoxygenase were most abundant in tuber tissue, lower in roots, and hardly detectable in leaves, petioles, and stems. The induction of lipoxygenase expression in tubers by wounding was dependent on various parameters. Whereas lipoxygenase transcript levels increased in discs from stored tubers incubated under aerobic conditions, tubers taken from a growing plant did not accumulate lipoxygenase transcripts in response to wounding. Incubation of tuber discs in buffer did not lead to an increase in lipoxygenase RNA levels; however, methyl jasmonate stimulated lipoxygenase expression after 24 h in stored tubers. Proteinase inhibitor II mRNAs decreased in stored tubers as well as in discs from growing tubers.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell E., Mullet J. E. Lipoxygenase gene expression is modulated in plants by water deficit, wounding, and methyl jasmonate. Mol Gen Genet. 1991 Dec;230(3):456–462. doi: 10.1007/BF00280303. [DOI] [PubMed] [Google Scholar]
  2. Bostock R. M., Yamamoto H., Choi D., Ricker K. E., Ward B. L. Rapid stimulation of 5-lipoxygenase activity in potato by the fungal elicitor arachidonic Acid. Plant Physiol. 1992 Nov;100(3):1448–1456. doi: 10.1104/pp.100.3.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brinkmann U., Mattes R. E., Buckel P. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene. 1989 Dec 21;85(1):109–114. doi: 10.1016/0378-1119(89)90470-8. [DOI] [PubMed] [Google Scholar]
  4. Choi D., Ward B. L., Bostock R. M. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell. 1992 Oct;4(10):1333–1344. doi: 10.1105/tpc.4.10.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Croft KPC., Juttner F., Slusarenko A. J. Volatile Products of the Lipoxygenase Pathway Evolved from Phaseolus vulgaris (L.) Leaves Inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol. 1993 Jan;101(1):13–24. doi: 10.1104/pp.101.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farmer E. E., Johnson R. R., Ryan C. A. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic Acid. Plant Physiol. 1992 Mar;98(3):995–1002. doi: 10.1104/pp.98.3.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farmer E. E., Ryan C. A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7713–7716. doi: 10.1073/pnas.87.19.7713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Farmer E. E., Ryan C. A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell. 1992 Feb;4(2):129–134. doi: 10.1105/tpc.4.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grimes H. D., Koetje D. S., Franceschi V. R. Expression, activity, and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean seedlings. Plant Physiol. 1992 Sep;100(1):433–443. doi: 10.1104/pp.100.1.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  11. Melan M. A., Dong X., Endara M. E., Davis K. R., Ausubel F. M., Peterman T. K. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 1993 Feb;101(2):441–450. doi: 10.1104/pp.101.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Millar D. J., Allen A. K., Smith C. G., Sidebottom C., Slabas A. R., Bolwell G. P. Chitin-binding proteins in potato (Solanum tuberosum L.) tuber. Characterization, immunolocalization and effects of wounding. Biochem J. 1992 May 1;283(Pt 3):813–821. doi: 10.1042/bj2830813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ohta H., Shirano Y., Tanaka K., Morita Y., Shibata D. cDNA cloning of rice lipoxygenase L-2 and characterization using an active enzyme expressed from the cDNA in Escherichia coli. Eur J Biochem. 1992 Jun 1;206(2):331–336. doi: 10.1111/j.1432-1033.1992.tb16931.x. [DOI] [PubMed] [Google Scholar]
  15. Reddanna P., Whelan J., Maddipati K. R., Reddy C. C. Purification of arachidonate 5-lipoxygenase from potato tubers. Methods Enzymol. 1990;187:268–277. doi: 10.1016/0076-6879(90)87031-w. [DOI] [PubMed] [Google Scholar]
  16. Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  17. Rumeau D., Maher E. A., Kelman A., Showalter A. M. Extensin and Phenylalanine Ammonia-Lyase Gene Expression Altered in Potato Tubers in Response to Wounding, Hypoxia, and Erwinia carotovora Infection. Plant Physiol. 1990 Jul;93(3):1134–1139. doi: 10.1104/pp.93.3.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shibata D., Steczko J., Dixon J. E., Andrews P. C., Hermodson M., Axelrod B. Primary structure of soybean lipoxygenase L-2. J Biol Chem. 1988 May 15;263(14):6816–6821. [PubMed] [Google Scholar]
  19. Shibata D., Steczko J., Dixon J. E., Hermodson M., Yazdanparast R., Axelrod B. Primary structure of soybean lipoxygenase-1. J Biol Chem. 1987 Jul 25;262(21):10080–10085. [PubMed] [Google Scholar]
  20. Shimizu T., Honda Z., Miki I., Seyama Y., Izumi T., Rådmark O., Samuelsson B. Potato arachidonate 5-lipoxygenase: purification, characterization, and preparation of 5(S)-hydroperoxyeicosatetraenoic acid. Methods Enzymol. 1990;187:296–306. doi: 10.1016/0076-6879(90)87034-z. [DOI] [PubMed] [Google Scholar]
  21. Shimizu T., Rådmark O., Samuelsson B. Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci U S A. 1984 Feb;81(3):689–693. doi: 10.1073/pnas.81.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stermer B. A., Bostock R. M. Involvement of 3-hydroxy-3-methylglutaryl coenzyme a reductase in the regulation of sesquiterpenoid phytoalexin synthesis in potato. Plant Physiol. 1987 Jun;84(2):404–408. doi: 10.1104/pp.84.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES