Abstract
A combination of microdissection and viscometric endo-[beta]-1,4-glucanhydrolase assays was used to investigate if the early appearance of the abscission-related isoelectric point-9.5 endo-[beta]-1,4-glucanhydrolase in the stele of the pulvinus and abscission zone of the foliar abscission zone of Phaseolus vulgaris L. prior to cell separation (reported by E. del Campillo, P.D. Reid, R. Sexton, L.N.Lewis [1990] Plant Cell 2: 245-254) indicates that the vascular tissue of this region has a specific role in abscission. We find that no endo-[beta]-1,4-glucanhydrolase activity or cell separation is detectable in the abscission zone cortex if the abscission zone cortex is separated from the stele tissue. If the stele is separated from the abscission zone cortex after a lag period but again before any endo-[beta]-1,4-glucanhydrolase activity is present in the abscission zone cortex, then the enzyme is produced in the cortex and abscission ensues. We conclude that the cortex of the abscission zone is able to abscind independently of the vascular tissue only after the vascular tissue has begun to respond to abscission-promoting signals. We suggest that ethylene promotes formation of an abscission-permitting signal in the stele of the abscission zone and pulvinus, and that this signal is an essential elicitor for the synthesis of cell separation enzymes in the target cells of the abscission zone cortex.
Full Text
The Full Text of this article is available as a PDF (682.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Del Campillo E., Reid P. D., Sexton R., Lewis L. N. Occurrence and Localization of 9.5 Cellulase in Abscising and Nonabscising Tissues. Plant Cell. 1990 Mar;2(3):245–254. doi: 10.1105/tpc.2.3.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson M. B., Osborne D. J. Ethylene, the natural regulator of leaf abscission. Nature. 1970 Mar 14;225(5237):1019–1022. doi: 10.1038/2251019a0. [DOI] [PubMed] [Google Scholar]
- McDougall G. J., Fry S. C. Xyloglucan oligosaccharides promote growth and activate cellulase: evidence for a role of cellulase in cell expansion. Plant Physiol. 1990 Jul;93(3):1042–1048. doi: 10.1104/pp.93.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morre D. J. Cell wall dissolution and enzyme secretion during leaf abscission. Plant Physiol. 1968 Sep;43(9 Pt B):1545–1559. [PMC free article] [PubMed] [Google Scholar]
- Sagee O., Goren R., Riov J. Abscission of Citrus Leaf Explants: INTERRELATIONSHIPS OF ABSCISIC ACID, ETHYLENE, AND HYDROLYTIC ENZYMES. Plant Physiol. 1980 Oct;66(4):750–753. doi: 10.1104/pp.66.4.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suttle J. C., Hultstrand J. F. Involvement of Abscisic Acid in Ethylene-Induced Cotyledon Abscission in Cotton Seedlings. Plant Physiol. 1993 Feb;101(2):641–646. doi: 10.1104/pp.101.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor R., Inamine G., Anderson J. D. Tissue Printing as a Tool for Observing Immunological and Protein Profiles in Young and Mature Celery Petioles. Plant Physiol. 1993 Jul;102(3):1027–1031. doi: 10.1104/pp.102.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]