Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 May;105(1):369–376. doi: 10.1104/pp.105.1.369

Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings.

C C Subbaiah 1, J Zhang 1, M M Sachs 1
PMCID: PMC159365  PMID: 7518090

Abstract

Ca-mediated processes are known to be involved in transducing many developmental, hormonal, and environmental cues in plant cells. In this study, the role of Ca in the perception of anoxic stress signals by maize (Zea mays L. cv B73) roots was assessed by studying the effect of various Ca antagonists on the induction of alcohol dehydrogenase (ADH) and sucrose synthase mRNA as well as ADH activity under anoxia. The effect of these compounds on the poststress recovery of the seedlings was also monitored. Ruthenium red (RR), an inhibitor of organellar Ca fluxes, repressed the anoxic activation of the alcohol dehydrogenase1 and shrunken1 genes as measured by their transcript levels as well as ADH activity. Furthermore, RR-treated seedlings could not recover even after only 2 h of flooding, in contrast to untreated B73 seedlings that survived 72 h of submergence. Ca, when supplied along with RR, allowed normal anoxic gene expression and also prevented the RR-imposed death of the seedlings from short-term anoxia. Ca (45Ca) fluxes were measured in maize roots to elucidate the mode of action of RR. RR abolished anoxia-stimulated 45Ca influx into maize roots but did not affect aerobic Ca2+ uptake, unlike a few other antagonists that blocked both the aerobic and anoxic fluxes. However, Ca uptake across the plasma membrane was not necessary for the adaptive response to anoxia, since chelation of extracellular Ca by ethyleneglycol-bis(beta-aminoethyl ether)-N,N'-tetraacetic acid or 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid did not affect the induction of ADH activity or poststress survival of flooded seedlings. The data suggest that RR may act on one of the intracellular stores of Ca and the Ca mobilized from this source is a physiological transducer of anoxic stress signals in maize roots.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldashev A. A., Agibetov K. A., Iugai A. A., Shamshiev A. T., Kim E. V. Gipoksicheskie stress-belki iz limfotsitov cheloveka, indutsiruemye ionami Ca2+. Dokl Akad Nauk SSSR. 1991;321(1):210–213. [PubMed] [Google Scholar]
  2. Allshire A., Piper H. M., Cuthbertson K. S., Cobbold P. H. Cytosolic free Ca2+ in single rat heart cells during anoxia and reoxygenation. Biochem J. 1987 Jun 1;244(2):381–385. doi: 10.1042/bj2440381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andrews D. L., Cobb B. G., Johnson J. R., Drew M. C. Hypoxic and Anoxic Induction of Alcohol Dehydrogenase in Roots and Shoots of Seedlings of Zea mays (Adh Transcripts and Enzyme Activity). Plant Physiol. 1993 Feb;101(2):407–414. doi: 10.1104/pp.101.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borgers M., Piper H. M. Calcium-shifts in anoxic cardiac myocytes. A cytochemical study. J Mol Cell Cardiol. 1986 Apr;18(4):439–448. doi: 10.1016/s0022-2828(86)80906-3. [DOI] [PubMed] [Google Scholar]
  5. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dennis E. S., Gerlach W. L., Pryor A. J., Bennetzen J. L., Inglis A., Llewellyn D., Sachs M. M., Ferl R. J., Peacock W. J. Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucleic Acids Res. 1984 May 11;12(9):3983–4000. doi: 10.1093/nar/12.9.3983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferrari R., di Lisa F., Raddino R., Visioli O. The effects of ruthenium red on mitochondrial function during post-ischaemic reperfusion. J Mol Cell Cardiol. 1982 Dec;14(12):737–740. doi: 10.1016/0022-2828(82)90186-9. [DOI] [PubMed] [Google Scholar]
  8. Fletcher J. E., Tripolitis L., Beech J. Species difference in modulation of calcium release by Naja naja kaouthia snake venom cardiotoxin in terminal cisternae from human and equine skeletal muscle. Toxicon. 1993 Jan;31(1):43–51. doi: 10.1016/0041-0101(93)90355-m. [DOI] [PubMed] [Google Scholar]
  9. Gasbarrini A., Borle A. B., Farghali H., Francavilla A., Van Thiel D. Fructose protects rat hepatocytes from anoxic injury. Effect on intracellular ATP, Ca2+i, Mg2+i, Na+i, and pHi. J Biol Chem. 1992 Apr 15;267(11):7545–7552. [PubMed] [Google Scholar]
  10. Himpens B., De Smedt H., Casteels R. Kinetics of nucleocytoplasmic Ca2+ transients in DDT1 MF-2 smooth muscle cells. Am J Physiol. 1992 Nov;263(5 Pt 1):C978–C985. doi: 10.1152/ajpcell.1992.263.5.C978. [DOI] [PubMed] [Google Scholar]
  11. Jones R. S., Mitchell C. A. Calcium ion involvement in growth inhibition of mechanically stressed soybean (Glycine max) seedlings. Physiol Plant. 1989;76:598–602. doi: 10.1111/j.1399-3054.1989.tb05485.x. [DOI] [PubMed] [Google Scholar]
  12. Knight M. R., Smith S. M., Trewavas A. J. Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4967–4971. doi: 10.1073/pnas.89.11.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lynch J., Läuchli A. Salinity affects intracellular calcium in corn root protoplasts. Plant Physiol. 1988 Jun;87(2):351–356. doi: 10.1104/pp.87.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miyata H., Lakatta E. G., Stern M. D., Silverman H. S. Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res. 1992 Sep;71(3):605–613. doi: 10.1161/01.res.71.3.605. [DOI] [PubMed] [Google Scholar]
  15. Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
  16. Nishida T., Inoue T., Kamiike W., Kawashima Y., Tagawa K. Involvement of Ca2+ release and activation of phospholipase A2 in mitochondrial dysfunction during anoxia. J Biochem. 1989 Sep;106(3):533–538. doi: 10.1093/oxfordjournals.jbchem.a122887. [DOI] [PubMed] [Google Scholar]
  17. Park Y., Bowles D. K., Kehrer J. P. Protection against hypoxic injury in isolated-perfused rat heart by ruthenium red. J Pharmacol Exp Ther. 1990 May;253(2):628–635. [PubMed] [Google Scholar]
  18. Poovaiah B. W., Reddy A. S. Calcium and signal transduction in plants. CRC Crit Rev Plant Sci. 1993;12(3):185–211. doi: 10.1080/07352689309701901. [DOI] [PubMed] [Google Scholar]
  19. Putney J. W., Jr Excitement about calcium signaling in inexcitable cells. Science. 1993 Oct 29;262(5134):676–678. doi: 10.1126/science.8235587. [DOI] [PubMed] [Google Scholar]
  20. Russell D. A., Wong D. M., Sachs M. M. The anaerobic response of soybean. Plant Physiol. 1990 Feb;92(2):401–407. doi: 10.1104/pp.92.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sachs M. M., Freeling M., Okimoto R. The anaerobic proteins of maize. Cell. 1980 Jul;20(3):761–767. doi: 10.1016/0092-8674(80)90322-0. [DOI] [PubMed] [Google Scholar]
  22. Sasaki T., Naka M., Nakamura F., Tanaka T. Ruthenium red inhibits the binding of calcium to calmodulin required for enzyme activation. J Biol Chem. 1992 Oct 25;267(30):21518–21523. [PubMed] [Google Scholar]
  23. Saunders M. J., Hepler P. K. Calcium antagonists and calmodulin inhibitors block cytokinin-induced bud formation in Funaria. Dev Biol. 1983 Sep;99(1):41–49. doi: 10.1016/0012-1606(83)90252-x. [DOI] [PubMed] [Google Scholar]
  24. Shen A. C., Jennings R. B. Myocardial calcium and magnesium in acute ischemic injury. Am J Pathol. 1972 Jun;67(3):417–440. [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES