Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 May;105(1):377–384. doi: 10.1104/pp.105.1.377

Molecular cloning and characterization of the pyrB1 and pyrB2 genes encoding aspartate transcarbamoylase in pea (Pisum sativum L.).

C L Williamson 1, R D Slocum 1
PMCID: PMC159366  PMID: 8029359

Abstract

We cloned cDNAs encoding two different pea (Pisum sativum L.) aspartate transcarbamoylases (ATCases) by complementation of an Escherichia coli delta pyrB mutant. The two cDNAs, designated pyrB1 and pyrB2, encode polypeptides of 386 and 385 amino acid residues, respectively, both of which exhibit typical chloroplast transit peptide sequences. Wheat germ ATCase antibody recognizes a 36.5-kD polypeptide in pea leaf and root tissues that is similar in size to other plant ATCase polypeptides and to the catalytic polypeptides of bacterial ATCases. Northern analyses indicate that the pyrB1 and pyrB2 transcripts are 1.6 kb in size and are differentially expressed in pea tissues. The small transcript size and data from biochemical studies indicate that plant ATCases are simple homotrimers of 36- to 37-kD catalytic subunits, rather than part of a multifunctional enzyme containing glutamine-dependent carbamoylphosphate synthetase and dihydroorotase activities, as is seen in other eukaryotes. In the pea ATCases, the carbamoylphosphate- and aspartate-binding domains are highly homologous to those of other prokaryotic and eukaryotic ATCases and critical active-site residues are completely conserved. The pea ATCases also exhibit a putative pyrimidine-binding site, consistent with the known allosteric regulation of plant ATCases by UMP in vitro.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyde T. R., Rahmatullah M. Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Anal Biochem. 1980 Sep 15;107(2):424–431. doi: 10.1016/0003-2697(80)90404-2. [DOI] [PubMed] [Google Scholar]
  2. Brabson J. S., Switzer R. L. Purification and properties of Bacillus subtilis aspartate transcarbamylase. J Biol Chem. 1975 Nov 25;250(22):8664–8669. [PubMed] [Google Scholar]
  3. Cole S. C., Yon R. J. Ligand-mediated conformational changes in wheat-germ aspartate transcarbamoylase indicated by proteolytic susceptibility. Biochem J. 1984 Jul 15;221(2):289–296. doi: 10.1042/bj2210289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doremus H. D., Jagendorf A. T. Subcellular localization of the pathway of de novo pyrimidine nucleotide biosynthesis in pea leaves. Plant Physiol. 1985 Nov;79(3):856–861. doi: 10.1104/pp.79.3.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doremus H. D. Organization of the pathway of de novo pyrimidine nucleotide biosynthesis in pea (Pisum sativum L. cv Progress No. 9) leaves. Arch Biochem Biophys. 1986 Oct;250(1):112–119. doi: 10.1016/0003-9861(86)90707-1. [DOI] [PubMed] [Google Scholar]
  6. Gerhart J. C., Schachman H. K. Distinct subunits for the regulation and catalytic activity of aspartate transcarbamylase. Biochemistry. 1965 Jun;4(6):1054–1062. doi: 10.1021/bi00882a012. [DOI] [PubMed] [Google Scholar]
  7. Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. doi: 10.1016/0003-2697(81)90473-5. [DOI] [PubMed] [Google Scholar]
  8. Jones M. E. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem. 1980;49:253–279. doi: 10.1146/annurev.bi.49.070180.001345. [DOI] [PubMed] [Google Scholar]
  9. Kantrowitz E. R., Lipscomb W. N. Escherichia coli aspartate transcarbamylase: the relation between structure and function. Science. 1988 Aug 5;241(4866):669–674. doi: 10.1126/science.3041592. [DOI] [PubMed] [Google Scholar]
  10. Lovatt C. J., Cheng A. H. Aspartate Carbamyltransferase : Site of End-Product Inhibition of the Orotate Pathway in Intact Cells of Cucurbita pepo. Plant Physiol. 1984 Jul;75(3):511–515. doi: 10.1104/pp.75.3.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Makoff A. J., Radford A. Genetics and biochemistry of carbamoyl phosphate biosynthesis and its utilization in the pyrimidine biosynthetic pathway. Microbiol Rev. 1978 Jun;42(2):307–328. doi: 10.1128/mr.42.2.307-328.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Minet M., Dufour M. E., Lacroute F. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J. 1992 May;2(3):417–422. doi: 10.1111/j.1365-313x.1992.00417.x. [DOI] [PubMed] [Google Scholar]
  13. Nagy M., Le Gouar M., Potier S., Souciet J. L., Hervé G. The primary structure of the aspartate transcarbamylase region of the URA2 gene product in Saccharomyces cerevisiae. Features involved in activity and nuclear localization. J Biol Chem. 1989 May 15;264(14):8366–8374. [PubMed] [Google Scholar]
  14. Peterson C. B., Schachman H. K. Role of a carboxyl-terminal helix in the assembly, interchain interactions, and stability of aspartate transcarbamoylase. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):458–462. doi: 10.1073/pnas.88.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schachman H. K., Pauza C. D., Navre M., Karels M. J., Wu L., Yang Y. R. Location of amino acid alterations in mutants of aspartate transcarbamoylase: Structural aspects of interallelic complementation. Proc Natl Acad Sci U S A. 1984 Jan;81(1):115–119. doi: 10.1073/pnas.81.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shargool P. D., Steeves T., Weaver M., Russell M. The localization within plant cells of enzymes involved in arginine biosynthesis. Can J Biochem. 1978 Apr;56(4):273–279. doi: 10.1139/o78-042. [DOI] [PubMed] [Google Scholar]
  17. Shibata H., Ochiai H., Sawa Y., Miyoshi S. Localization of carbamoylphosphate synthetase and aspartate carbamoyltransferase in chloroplasts. Plant Physiol. 1986 Jan;80(1):126–129. doi: 10.1104/pp.80.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Slocum R. D., Williamson C. L., Poggenburg C. A., Lynes M. A. Immunological characterization of plant ornithine transcarbamylases. Plant Physiol. 1990;92:1205–1210. doi: 10.1104/pp.92.4.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wales M. E., Mann-Dean M. G., Wild J. R. Characterization of pyrimidine metabolism in the cellular slime mold, Dictyostelium discoideum. Can J Microbiol. 1989 Apr;35(4):432–438. doi: 10.1139/m89-066. [DOI] [PubMed] [Google Scholar]
  21. Wild J. R., Wales M. E. Molecular evolution and genetic engineering of protein domains involving aspartate transcarbamoylase. Annu Rev Microbiol. 1990;44:193–218. doi: 10.1146/annurev.mi.44.100190.001205. [DOI] [PubMed] [Google Scholar]
  22. Williamson C. L., Slocum R. D. Characterization of an aspartate transcarbamoylase cDNA from pea (Pisum sativum L.). Plant Physiol. 1993 Jul;102(3):1055–1056. doi: 10.1104/pp.102.3.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yon R. J., Grayson J. E., Chawda A., Butterworth P. J. The quaternary structure of wheat-germ aspartate transcarbamoylase. Biochem J. 1982 May 1;203(2):413–417. doi: 10.1042/bj2030413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES