Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 May;105(1):385–393. doi: 10.1104/pp.105.1.385

The LOX1 Gene of Arabidopsis Is Temporally and Spatially Regulated in Germinating Seedlings.

M A Melan 1, ALD Enriquez 1, T K Peterman 1
PMCID: PMC159367  PMID: 12232208

Abstract

We examined the temporal and spatial expression patterns of the LOX1 gene during the development of Arabidopsis thaliana seedlings. Measurements of steady-state LOX1 mRNA levels indicated that this gene is transiently expressed during germination. LOX1 mRNA was not detected in seed that had imbibed (T0) but reached a maximum level by 1 d in both light- and dark-grown seedlings. The induction of the LOX1 gene was not light dependent; however, mRNA levels were 4-fold greater in light-grown seedlings. Immunoblot analysis of lipoxygenase protein levels and measurements of enzyme activity suggested that the induction of the LOX1 gene resulted in the production of functional lipoxygenase enzyme. Lipoxygenase protein was not present in dry seed or seed that had imbibed, but was first detected by immunoblot analysis after 1 and 2 d of growth in the light and dark, respectively. In both cases, lipoxygenase protein levels remained high for 2 d and then declined. Lipoxygenase activity paralleled the changes in protein levels. In situ hybridization studies revealed that the LOX1 gene is transiently expressed in the epidermis and the aleurone layer during germination. LOX1 mRNA levels were particularly high in the epidermis of the radicle and the adaxial side of the cotyledons. These results suggest that the LOX1 gene product is produced specifically during early germination and plays a role in the functioning of the epidermis.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell E., Mullet J. E. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol. 1993 Dec;103(4):1133–1137. doi: 10.1104/pp.103.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Goodrich J., Carpenter R., Coen E. S. A common gene regulates pigmentation pattern in diverse plant species. Cell. 1992 Mar 6;68(5):955–964. doi: 10.1016/0092-8674(92)90038-e. [DOI] [PubMed] [Google Scholar]
  4. Grimes H. D., Koetje D. S., Franceschi V. R. Expression, activity, and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean seedlings. Plant Physiol. 1992 Sep;100(1):433–443. doi: 10.1104/pp.100.1.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hayashi S., Gillam I. C., Delaney A. D., Tener G. M. Acetylation of chromosome squashes of Drosophila melanogaster decreases the background in autoradiographs from hybridization with [125I]-labeled RNA. J Histochem Cytochem. 1978 Aug;26(8):677–679. doi: 10.1177/26.8.99471. [DOI] [PubMed] [Google Scholar]
  6. Kato T., Ohta H., Tanaka K., Shibata D. Appearance of new lipoxygenases in soybean cotyledons after germination and evidence for expression of a major new lipoxygenase gene. Plant Physiol. 1992 Jan;98(1):324–330. doi: 10.1104/pp.98.1.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Maccarrone M., Veldink G. A., Vliegenthart J. F. Phytochrome control and anoxia effect on the activity and expression of soybean seedling lipoxygenases 1 and 2. FEBS Lett. 1991 Oct 7;291(1):117–121. doi: 10.1016/0014-5793(91)81117-q. [DOI] [PubMed] [Google Scholar]
  8. Mack A. J., Peterman T. K., Siedow J. N. Lipoxygenase isozymes in higher plants: biochemical properties and physiological role. Isozymes Curr Top Biol Med Res. 1987;13:127–154. [PubMed] [Google Scholar]
  9. Melan M. A., Dong X., Endara M. E., Davis K. R., Ausubel F. M., Peterman T. K. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 1993 Feb;101(2):441–450. doi: 10.1104/pp.101.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nick P., Bergfeld R., Schafer E., Schopfer P. Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls. Planta. 1990 May;181(2):162–168. doi: 10.1007/BF02411533. [DOI] [PubMed] [Google Scholar]
  11. Oelze-Karow H., Mohr H. An attempt to localize the threshold reaction in phytochrome-mediated control of lipoxygenase synthesis in the mustard seedling. Photochem Photobiol. 1976 Jan;23(1):61–67. doi: 10.1111/j.1751-1097.1976.tb06772.x. [DOI] [PubMed] [Google Scholar]
  12. Schmelzer E., Kruger-Lebus S., Hahlbrock K. Temporal and Spatial Patterns of Gene Expression around Sites of Attempted Fungal Infection in Parsley Leaves. Plant Cell. 1989 Oct;1(10):993–1001. doi: 10.1105/tpc.1.10.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sossountzov L., Ruiz-Avila L., Vignols F., Jolliot A., Arondel V., Tchang F., Grosbois M., Guerbette F., Miginiac E., Delseny M. Spatial and temporal expression of a maize lipid transfer protein gene. Plant Cell. 1991 Sep;3(9):923–933. doi: 10.1105/tpc.3.9.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Staswick P. E. Jasmonate, genes, and fragrant signals. Plant Physiol. 1992 Jul;99(3):804–807. doi: 10.1104/pp.99.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vernooy-Gerritsen M., Bos A. L., Veldink G. A., Vliegenthart J. F. Localization of lipoxygenases 1 and 2 in germinating soybean seeds by an indirect immunofluorescence technique. Plant Physiol. 1983 Oct;73(2):262–267. doi: 10.1104/pp.73.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wyatt R. E., Nagao R. T., Key J. L. Patterns of soybean proline-rich protein gene expression. Plant Cell. 1992 Jan;4(1):99–110. doi: 10.1105/tpc.4.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zimmerman D. C., Coudron C. A. Identification of Traumatin, a Wound Hormone, as 12-Oxo-trans-10-dodecenoic Acid. Plant Physiol. 1979 Mar;63(3):536–541. doi: 10.1104/pp.63.3.536. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES