Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Jun;105(2):483–490. doi: 10.1104/pp.105.2.483

Species-dependent expression of the hyoscyamine 6 beta-hydroxylase gene in the pericycle.

T Kanegae 1, H Kajiya 1, Y Amano 1, T Hashimoto 1, Y Yamada 1
PMCID: PMC159385  PMID: 8066129

Abstract

The tropane alkaloid scopolamine is synthesized in the pericycle of branch roots in certain species of the Solanaceae. The enzyme responsible for the synthesis of scopolamine from hyoscyamine is hyoscyamine 6 beta-hydroxylase (H6H). The gene for H6H was isolated from Hyoscyamus niger. It has an exon/intron organization very similar to those for ethylene-forming enzymes, suggesting a common evolutionary origin. The 827-bp 5' flanking region of the H6H gene was fused to the beta-glucuronidase (GUS) reporter gene and transferred to three solanaceous species by Agrobacterium-mediated transformation systems: H. niger and belladonna (Atropa belladonna), which have high and low levels, respectively, of H6H mRNA in the root, and tobacco (Nicotiana tabacum), which has no endogenous H6H gene. Histochemical analysis showed that GUS expression occurred in the pericycle and at the root meristem of transgenic H. niger hairy roots, but only at the root meristem of transgenic H. niger hairy roots, but only at the root meristem of hairy roots and plants of transgenic tobacco. In transgenic hairy roots and regenerated plants of belladonna, the root meristem was stained with GUS activity, except for a few transformants in which the vascular cylinder was also stained. These studies indicate that the cell-specific expression of the H6H gene is controlled by some genetic regulation specific to scopolamine-producing plants.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benfey P. N., Chua N. H. Regulated genes in transgenic plants. Science. 1989 Apr 14;244(4901):174–181. doi: 10.1126/science.244.4901.174. [DOI] [PubMed] [Google Scholar]
  2. Benfey P. N., Chua N. H. The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants. Science. 1990 Nov 16;250(4983):959–966. doi: 10.1126/science.250.4983.959. [DOI] [PubMed] [Google Scholar]
  3. Benfey P. N., Takatsuji H., Ren L., Shah D. M., Chua N. H. Sequence Requirements of the 5-Enolpyruvylshikimate-3-phosphate Synthase 5[prime]-Upstream Region for Tissue-Specific Expression in Flowers and Seedlings. Plant Cell. 1990 Sep;2(9):849–856. doi: 10.1105/tpc.2.9.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Britsch L., Ruhnau-Brich B., Forkmann G. Molecular cloning, sequence analysis, and in vitro expression of flavanone 3 beta-hydroxylase from Petunia hybrida. J Biol Chem. 1992 Mar 15;267(8):5380–5387. [PubMed] [Google Scholar]
  5. Budelier K. A., Smith A. G., Gasser C. S. Regulation of a stylar transmitting tissue-specific gene in wild-type and transgenic tomato and tobacco. Mol Gen Genet. 1990 Nov;224(2):183–192. doi: 10.1007/BF00271551. [DOI] [PubMed] [Google Scholar]
  6. Deikman J., Fischer R. L. Interaction of a DNA binding factor with the 5'-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J. 1988 Nov;7(11):3315–3320. doi: 10.1002/j.1460-2075.1988.tb03202.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dickey L. F., Gallo-Meagher M., Thompson W. F. Light regulatory sequences are located within the 5' portion of the Fed-1 message sequence. EMBO J. 1992 Jun;11(6):2311–2317. doi: 10.1002/j.1460-2075.1992.tb05290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dietrich R. A., Radke S. E., Harada J. J. Downstream DNA sequences are required to activate a gene expressed in the root cortex of embryos and seedlings. Plant Cell. 1992 Nov;4(11):1371–1382. doi: 10.1105/tpc.4.11.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gerats A. G., Farcy E., Wallroth M., Groot S. P., Schram A. Control of Anthocyanin Synthesis in PETUNIA HYBRIDA by Multiple Allelic Series of the Genes An1 and An2. Genetics. 1984 Mar;106(3):501–508. doi: 10.1093/genetics/106.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hashimoto T., Hayashi A., Amano Y., Kohno J., Iwanari H., Usuda S., Yamada Y. Hyoscyamine 6 beta-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J Biol Chem. 1991 Mar 5;266(7):4648–4653. [PubMed] [Google Scholar]
  11. Hashimoto T., Matsuda J., Yamada Y. Two-step epoxidation of hyoscyamine to scopolamine is catalyzed by bifunctional hyoscyamine 6 beta-hydroxylase. FEBS Lett. 1993 Aug 23;329(1-2):35–39. doi: 10.1016/0014-5793(93)80187-y. [DOI] [PubMed] [Google Scholar]
  12. Hashimoto T., Yamada Y. Hyoscyamine 6beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, in alkaloid-producing root cultures. Plant Physiol. 1986 Jun;81(2):619–625. doi: 10.1104/pp.81.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Katagiri F., Chua N. H. Plant transcription factors: present knowledge and future challenges. Trends Genet. 1992 Jan;8(1):22–27. doi: 10.1016/0168-9525(92)90020-5. [DOI] [PubMed] [Google Scholar]
  15. Kutchan T. M., Hampp N., Lottspeich F., Beyreuther K., Zenk M. H. The cDNA clone for strictosidine synthase from Rauvolfia serpentina. DNA sequence determination and expression in Escherichia coli. FEBS Lett. 1988 Sep 12;237(1-2):40–44. doi: 10.1016/0014-5793(88)80167-4. [DOI] [PubMed] [Google Scholar]
  16. Martin C., Prescott A., Mackay S., Bartlett J., Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1991 Jul;1(1):37–49. doi: 10.1111/j.1365-313x.1991.00037.x. [DOI] [PubMed] [Google Scholar]
  17. Matsuda J., Okabe S., Hashimoto T., Yamada Y. Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem. 1991 May 25;266(15):9460–9464. [PubMed] [Google Scholar]
  18. Miao G. H., Verma D. P. Soybean nodulin-26 gene encoding a channel protein is expressed only in the infected cells of nodules and is regulated differently in roots of homologous and heterologous plants. Plant Cell. 1993 Jul;5(7):781–794. doi: 10.1105/tpc.5.7.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schmid J., Doerner P. W., Clouse S. D., Dixon R. A., Lamb C. J. Developmental and environmental regulation of a bean chalcone synthase promoter in transgenic tobacco. Plant Cell. 1990 Jul;2(7):619–631. doi: 10.1105/tpc.2.7.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stafford H. A. Flavonoid evolution: an enzymic approach. Plant Physiol. 1991 Jul;96(3):680–685. doi: 10.1104/pp.96.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yun D. J., Hashimoto T., Yamada Y. Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11799–11803. doi: 10.1073/pnas.89.24.11799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van der Meer I. M., Brouwer M., Spelt C. E., Mol J. N., Stuitje A. R. The TACPyAT repeats in the chalcone synthase promoter of Petunia hybrida act as a dominant negative cis-acting module in the control of organ-specific expression. Plant J. 1992 Jul;2(4):525–535. doi: 10.1111/j.1365-313x.1992.00525.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES