Abstract
The study of sterol overproduction in tissues of LAB 1-4 mutant tobacco (Nicotiana tabacum L. cv Xanthi) (P. Maillot-Vernier, H. Schaller, P. Benveniste, G. Belliard [1989] Biochem Biophys Res Commun 165: 125-130) over several generations showed that the overproduction phenotype is stable in calli, with a 10-fold stimulation of sterol content when compared with wild-type calli. However, leaves of LAB 1-4 plants obtained after two steps of self-fertilization were characterized by a mere 3-fold stimulation, whereas calli obtained from these plants retained a typical sterol-overproducing mutant phenotype (i.e. a 10-fold increase of sterol content). These results suggest that the expression of the LAB 1-4 phenotype is dependent on the differentiation state of cells. Most of the sterols accumulating in the mutant tissues were present as steryl-esters, which were minor species in wild-type tissues. Subcellular fractionation showed that in both mutant and wild-type tissues, free sterols were associated mainly with microsomal membranes. In contrast, the bulk of steryl-esters present in mutant tissues was found in the soluble fraction of cells. Numerous lipid droplets were detected in the hyaloplasm of LAB 1-4 cells by cytochemical and cytological techniques. After isolation, these lipid granules were shown to contain steryl-esters. These results show that the overproduced sterols of mutant tissues accumulate as steryl-esters in hyaloplasmic bodies. The esterification process thus allows regulation of the amount of free sterols in membranes by subcellular compartmentation.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bronner R. Simultaneous demonstration of lipids and starch in plant tissues. Stain Technol. 1975 Jan;50(1):1–4. doi: 10.3109/10520297509117023. [DOI] [PubMed] [Google Scholar]
- Clausen M. K., Christiansen K., Jensen P. K., Behnke O. Isolation of lipid particles from baker's yeast. FEBS Lett. 1974 Jul 15;43(2):176–179. doi: 10.1016/0014-5793(74)80994-4. [DOI] [PubMed] [Google Scholar]
- Demel R. A., De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976 Oct 26;457(2):109–132. doi: 10.1016/0304-4157(76)90008-3. [DOI] [PubMed] [Google Scholar]
- Gondet L., Weber T., Maillot-Vernier P., Benveniste P., Bach T. J. Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in a tobacco mutant that overproduces sterols. Biochem Biophys Res Commun. 1992 Jul 31;186(2):888–893. doi: 10.1016/0006-291x(92)90829-a. [DOI] [PubMed] [Google Scholar]
- Hamilton J. A., Fujito D. T., Hammer C. F. Solubilization and localization of weakly polar lipids in unsonicated egg phosphatidylcholine: A 13C MAS NMR study. Biochemistry. 1991 Mar 19;30(11):2894–2902. doi: 10.1021/bi00225a024. [DOI] [PubMed] [Google Scholar]
- LYNN J. A. RAPID TOLUIDINE BLUE STAINING OF EPON-EMBEDDED AND MOUNTED "ADJACENT" SECTIONS. Am J Clin Pathol. 1965 Jul;44:57–58. doi: 10.1093/ajcp/44.1.57. [DOI] [PubMed] [Google Scholar]
- Maillot-Vernier P., Schaller H., Benveniste P., Belliard G. Biochemical characterization of a sterol mutant plant regenerated from a tobacco callus resistant to a triazole cytochrome-P-450-obtusifoliol-14-demethylase inhibitor. Biochem Biophys Res Commun. 1989 Nov 30;165(1):125–130. doi: 10.1016/0006-291x(89)91043-7. [DOI] [PubMed] [Google Scholar]
- Maillot-Vernier P., Schaller H., Benveniste P., Belliard G. In Vitro Selection of Calli Resistant to a Triazole Cytochrome-P-450-Obtusifoliol-14-Demethylase Inhibitor from Protoplasts of Nicotiana tabacum L. cv Xanthi. Plant Physiol. 1990 Jul;93(3):1190–1195. doi: 10.1104/pp.93.3.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shio H., Haley N. J., Fowler S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. III. Intracellular localization of cholesterol and cholesteryl ester. Lab Invest. 1979 Aug;41(2):160–167. [PubMed] [Google Scholar]
- Slack C. R., Bertaud W. S., Shaw B. D., Holland R., Browse J., Wright H. Some studies on the composition and surface properties of oil bodies from the seed cotyledons of safflower (Carthamus tinctorius) and linseed (Linum ustatissimum). Biochem J. 1980 Sep 15;190(3):551–561. doi: 10.1042/bj1900551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Treleaven W. D., Wassall S. R., Cushley R. J. Carbon-13 nuclear magnetic resonance study of spin labelled cholesteryl ester in model membranes. Chem Phys Lipids. 1983 Sep;33(3):223–231. doi: 10.1016/0009-3084(83)90074-9. [DOI] [PubMed] [Google Scholar]
- Westerman L., Roddick J. G. Annual Variation in Sterol Levels in Leaves of Taraxacum officinale Weber. Plant Physiol. 1981 Oct;68(4):872–875. doi: 10.1104/pp.68.4.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yatsu L. Y., Jacks T. J. Spherosome membranes: half unit-membranes. Plant Physiol. 1972 Jun;49(6):937–943. doi: 10.1104/pp.49.6.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
