Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Jun;105(2):545–554. doi: 10.1104/pp.105.2.545

Cleavage of Chlorophyll-Porphyrin (Requirement for Reduced Ferredoxin and Oxygen).

S Ginsburg 1, M Schellenberg 1, P Matile 1
PMCID: PMC159392  PMID: 12232222

Abstract

The chemical structures of some colorless catabolites that accumulate in senescent leaves have been established recently (B. Krautler, B. Jaun, W. Amrein, K. Bortlik, M. Schellenberg, P. Matile [1992] Plant Physiol Biochem 30: 333-346; W. Muhlecker, B. Krautler, S. Ginsburg, P. Matile [1993] Helv Chim Acta 76: 2976-2980). Such studies suggest that oxygenolytic cleavage of chlorophyll-porphyrin may occur by the action of a dioxygenase. We have attempted to demonstrate such an enzyme activity and to explore the requirements of the cleavage reaction in a reconstituted system of chloroplast (Chlpl) components prepared from senescent rape (Brassica napus L.) cotyledons. Intact senescent Chpls (also referred to as gerontoplasts) contain small amounts of two fluorescent chlorophyll catabolites, Bn-FCC-1 and Bn-FCC-2, probably representing primary cleavage products. Upon the incubation of Gpls in the presence of glucose-6-phosphate (Glc6P) or ATP, these catabolites (predominantly FCC-1) were produced in organello. In a reconstituted system of thylakoids and stroma fraction the FCCs (predominantly FCC-2) were produced in the presence of ferredoxin (Fd) and cofactors (NADPH, Glc6P) helping to keep Fd in the reduced state. Reduced Fd could not be replaced by other electron donors, suggesting that the putative dioxygenase requires Fd for the operation of its redox cycle. Production of FCC-2 did not occur in the absence of oxygen and it was inhibited by chelators of Fe2+. The contributions to the production of FCCs from both parts of the reconstituted system, thylakoids and stroma, are heat labile. The enzymic process in the thylakoids yields pheophorbide a, the presumptive precursor of FCCs. However, native senescent thylakoids could not be replaced as a "substrate" by free pheophorbide a. The stromal enzyme appears to have an affinity for senescent thylakoids; thus, "loaded" thylakoids capable of FCC production in the presence of Fd and cofactors were obtained upon homogenization of senescent cotyledons in a medium containing sorbitol and ascorbate. Such thylakoids were inactive if prepared from mature green cotyledons. As senescence was induced, the capacity to generate FCCs appeared and peaked when about half of the chlorophyll had disappeared from the cotyledons. The effectiveness of a relevant inhibitor showed that cytoplasmic protein synthesis was required for inducing the catabolic machinery in the loaded thylakoids. Thylakoids from mature Chlpls were ineffective as substrate of the stromal enzyme prepared from Gpls. However, senescent thylakoids yielded FCCs if challenged with stroma from either Chlpls or Gpls. Therefore, the stromal part of the system is likely to be a constitutive enzyme, and the pace-setting step of the pathway of chlorophyll breakdown seems to be located in the thylakoids.

Full Text

The Full Text of this article is available as a PDF (923.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Brouquisse R., Weigel P., Rhodes D., Yocum C. F., Hanson A. D. Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol. 1989 May;90(1):322–329. doi: 10.1104/pp.90.1.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Engel N., Jenny T. A., Mooser V., Gossauer A. Chlorophyll catabolism in Chlorella protothecoides. Isolation and structure elucidation of a red bilin derivative. FEBS Lett. 1991 Nov 18;293(1-2):131–133. doi: 10.1016/0014-5793(91)81168-8. [DOI] [PubMed] [Google Scholar]
  4. Tenhunen R., Marver H. S., Schmid R. Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem. 1969 Dec 10;244(23):6388–6394. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES