Abstract
We report the presence of oxalate in the organic acid fraction of broad bean (Vicia faba L.) nodule cytosol. Using both high-performance liquid chromatography and enzymic assays, high levels of oxalate were detected (70.4 [plus or minus] 2.4 mM). To study the potential role of oxalate as an energy-yielding substrate for nitrogenase activity, free bacteroids were isolated from nodules and found to oxidize oxalate in support of C2H2 reduction under O2 tensions that were lower than those required to oxidize succinate, another dicarboxylate commonly detected in legume nodules. Symbiosomes of broad bean, isolated for the first time from amide-producing nodules, were provided with [14C]oxalate and found to have uptake kinetics with a lower affinity [Km(oxalate) = 330 [mu]M] than that for free bacteroids [Km(oxalate) = 130 [mu]M]. In anaerobic preparations of symbiosomes supplied with purified oxyleghemoglobin, O2 consumption was stimulated by oxalate from 20.2 [plus or minus] 0.8 nmol O2 min-1mg-1 protein to 24.5 [plus or minus] 1.1 nmol O2 min-1 mg-1 protein but always remained lower than the rate of O2 consumption in free bacteroids (32.2 [plus or minus] 1.4 nmol O2 min-1 mg-1 protein). Under these conditions, C2H2 reduction activity was 9.7 [plus or minus] 0.8 and 15.1 [plus or minus] 0.9 nmol C2H4 min-1 mg-1 protein for symbiosomes and bacteroids, respectively. These data support the suggestion that oxalate may play a role as a carbon substrate in support of N2 fixation in broad bean nodules.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bearden J. C., Jr Quantitation of submicrogram quantities of protein by an improved protein-dye binding assay. Biochim Biophys Acta. 1978 Apr 26;533(2):525–529. doi: 10.1016/0005-2795(78)90398-7. [DOI] [PubMed] [Google Scholar]
- Bergersen F. J., Turner G. L., Appleby C. A. Studies of the physiological role of leghaemoglobin in soybean root nodules. Biochim Biophys Acta. 1973 Jan 18;292(1):271–282. doi: 10.1016/0005-2728(73)90271-5. [DOI] [PubMed] [Google Scholar]
- Dénarié J., Debellé F., Rosenberg C. Signaling and host range variation in nodulation. Annu Rev Microbiol. 1992;46:497–531. doi: 10.1146/annurev.mi.46.100192.002433. [DOI] [PubMed] [Google Scholar]
- Fougère F., Le Rudulier D., Streeter J. G. Effects of Salt Stress on Amino Acid, Organic Acid, and Carbohydrate Composition of Roots, Bacteroids, and Cytosol of Alfalfa (Medicago sativa L.). Plant Physiol. 1991 Aug;96(4):1228–1236. doi: 10.1104/pp.96.4.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerin V., Trinchant J. C., Rigaud J. Nitrogen Fixation (C(2)H(2) Reduction) by Broad Bean (Vicia faba L.) Nodules and Bacteroids under Water-Restricted Conditions. Plant Physiol. 1990 Mar;92(3):595–601. doi: 10.1104/pp.92.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long S. R. Rhizobium-legume nodulation: life together in the underground. Cell. 1989 Jan 27;56(2):203–214. doi: 10.1016/0092-8674(89)90893-3. [DOI] [PubMed] [Google Scholar]
- Udvardi M. K., Day D. A. Electrogenic ATPase Activity on the Peribacteroid Membrane of Soybean (Glycine max L.) Root Nodules. Plant Physiol. 1989 Jul;90(3):982–987. doi: 10.1104/pp.90.3.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittenberg J. B. Facilitated oxygen diffusion. The role of leghemoglobin in nitrogen fixation by bacteroids isolated from soybean root nodules. J Biol Chem. 1974 Jul 10;249(13):4057–4066. [PubMed] [Google Scholar]
