Abstract
Intact soybean (Glycine max L. [Merr.]) tissues show distinct proximal and distal cell responses to the Phytophthora sojae (Kauf. and Gerde.) wall glucan elicitor. Proximal cells respond with accumulations of glyceollin and phenolic polymers, whereas distal cells respond with an increase of isoflavone conjugates. Comparison of the activities of the P. sojae glucan in the classical cut cotyledon and a cotyledon infiltration assay suggests that the proximal, but not the distal, responses to elicitor require tissue wounding. Washing the surface of cut cotyledons prior to elicitor treatment also greatly diminishes the proximal responses, which can be restored in a dose-dependent manner by prior treatment of the washed cells with wound exudate from cut "donor" cotyledons. Thus, discrete wound-associated factors, which we term elicitation competency factors, are required for the proximal cell response to the glucan elicitor. The wound factors induce a competent state that is transient in nature. Maximal elicitor response is seen 2 to 3 h after wounding, and cells become elicitor nonresponsive after 4 h. Competency is markedly affected by the age of tissues; cotyledons become more inherently competent as they approach senescence. The time course of attainment of the competent state and its duration are strongly affected by light and temperature. Since the wound-associated competency factors can also be obtained from washings of hypersensitive lesions, we hypothesize that similar competency factors may be released from hypersensitively dying cells in incompatible infections. This event may program the immediately surrounding cells to make them competent for the proximal defense responses.
Full Text
The Full Text of this article is available as a PDF (842.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkinson M. M., Keppler L. D., Orlandi E. W., Baker C. J., Mischke C. F. Involvement of plasma membrane calcium influx in bacterial induction of the k/h and hypersensitive responses in tobacco. Plant Physiol. 1990 Jan;92(1):215–221. doi: 10.1104/pp.92.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ayers A. R., Ebel J., Valent B., Albersheim P. Host-Pathogen Interactions: X. Fractionation and Biological Activity of an Elicitor Isolated from the Mycelial Walls of Phytophthora megasperma var. sojae. Plant Physiol. 1976 May;57(5):760–765. doi: 10.1104/pp.57.5.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheong J. J., Hahn M. G. A specific, high-affinity binding site for the hepta-beta-glucoside elicitor exists in soybean membranes. Plant Cell. 1991 Feb;3(2):137–147. doi: 10.1105/tpc.3.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cline K., Albersheim P. Host-Pathogen Interactions : XVII. HYDROLYSIS OF BIOLOGICALLY ACTIVE FUNGAL GLUCANS BY ENZYMES ISOLATED FROM SOYBEAN CELLS. Plant Physiol. 1981 Jul;68(1):221–228. doi: 10.1104/pp.68.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham M. Y., Graham T. L. Rapid Accumulation of Anionic Peroxidases and Phenolic Polymers in Soybean Cotyledon Tissues following Treatment with Phytophthora megasperma f. sp. Glycinea Wall Glucan. Plant Physiol. 1991 Dec;97(4):1445–1455. doi: 10.1104/pp.97.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham T. L. A rapid, high resolution high performance liquid chromatography profiling procedure for plant and microbial aromatic secondary metabolites. Plant Physiol. 1991 Feb;95(2):584–593. doi: 10.1104/pp.95.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross P., Julius C., Schmelzer E., Hahlbrock K. Translocation of cytoplasm and nucleus to fungal penetration sites is associated with depolymerization of microtubules and defence gene activation in infected, cultured parsley cells. EMBO J. 1993 May;12(5):1735–1744. doi: 10.1002/j.1460-2075.1993.tb05821.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi Y., Yoshikawa M., Takeba G., Tanaka K., Shibata D., Horino O. Molecular Cloning and Ethylene Induction of mRNA Encoding a Phytoalexin Elicitor-Releasing Factor, beta-1,3-Endoglucanase, in Soybean. Plant Physiol. 1990 Jun;93(2):673–682. doi: 10.1104/pp.93.2.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
