Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Jun;105(2):629–633. doi: 10.1104/pp.105.2.629

Light-Dependent Tyrosine Phosphorylation in the Cyanobacterium Prochlorothrix hollandica.

K M Warner 1, G S Bullerjahn 1
PMCID: PMC159403  PMID: 12232230

Abstract

A light-dependent tyrosine kinase activity is present in soluble extracts from the cyanobacterium Prochlorothrix hollandica. The substrate of this tyrosine kinase activity is a soluble 88-kD protein that is phosphorylated when cultures of P. hollandica are adapted to high-light conditions. This phosphoprotein was identified by probing western blots of 32P-labeled soluble proteins from P. hollandica with an antibody specific for phosphotyrosine. This specificity was confirmed by competition experiments in which the antibody binding was abolished completely in the presence of excess phosphotyrosine but not phosphoserine and phosphothreonine. The kinetics of phosphorylation in vivo were determined by probing western blots with this antibody. Within 1 h following a switch from extended darkness to high light (200 [mu]mol photons m-2 s-1), the 88-kD protein was detectable upon India ink staining of western blots. After 3 h, the antibody recognized the phosphorylated form of this polypeptide. Within 6 h of a downshift from high to low light, the 88-kD protein was dephosphorylated. In vitro phosphorylation studies also showed that cell extracts can phosphorylate a tyrosine-containing artificial substrate; acid hydrolysis of both the artificial substrate and the 88-kD protein showed that phosphorylation occurred exclusively on tyrosine residues. Finally, experiments with high-light-adapted Synechococcus sp. PCC7942 suggest that a similar tyrosine phosphorylation event occurs in a phycobilisome-containing cyanobacterium.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. F. How does protein phosphorylation regulate photosynthesis? Trends Biochem Sci. 1992 Jan;17(1):12–17. doi: 10.1016/0968-0004(92)90418-9. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Bullerjahn G. S., Matthijs H. C., Mur L. R., Sherman L. A. Chlorophyll-protein composition of the thylakoid membrane from Prochlorothrix hollandica, a prokaryote containing chlorophyll b. Eur J Biochem. 1987 Oct 15;168(2):295–300. doi: 10.1111/j.1432-1033.1987.tb13420.x. [DOI] [PubMed] [Google Scholar]
  4. Bullerjahn G. S., Post A. F. The prochlorophytes: are they more than just chlorophyll a/b-containing cyanobacteria? Crit Rev Microbiol. 1993;19(1):43–59. doi: 10.3109/10408419309113522. [DOI] [PubMed] [Google Scholar]
  5. Cheng Y. S., Chen L. B. Detection of phosphotyrosine-containing 34,000-dalton protein in the framework of cells transformed with Rous sarcoma virus. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2388–2392. doi: 10.1073/pnas.78.4.2388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cortay J. C., Duclos B., Cozzone A. J. Phosphorylation of an Escherichia coli protein at tyrosine. J Mol Biol. 1986 Jan 20;187(2):305–308. doi: 10.1016/0022-2836(86)90236-6. [DOI] [PubMed] [Google Scholar]
  7. Cozzone A. J. Protein phosphorylation in prokaryotes. Annu Rev Microbiol. 1988;42:97–125. doi: 10.1146/annurev.mi.42.100188.000525. [DOI] [PubMed] [Google Scholar]
  8. Duclos B., Marcandier S., Cozzone A. J. Chemical properties and separation of phosphoamino acids by thin-layer chromatography and/or electrophoresis. Methods Enzymol. 1991;201:10–21. doi: 10.1016/0076-6879(91)01004-l. [DOI] [PubMed] [Google Scholar]
  9. Vallejos R. H., Holuigue L., Lucero H. A., Torruella M. Evidence of tyrosine kinase activity in the photosynthetic bacterium Rhodospirillum rubrum. Biochem Biophys Res Commun. 1985 Jan 31;126(2):685–691. doi: 10.1016/0006-291x(85)90239-6. [DOI] [PubMed] [Google Scholar]
  10. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES