Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Jun;105(2):635–641. doi: 10.1104/pp.105.2.635

Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacterium.

W D Hitz 1, T J Carlson 1, J R Booth Jr 1, A J Kinney 1, K L Stecca 1, N S Yadav 1
PMCID: PMC159404  PMID: 8066133

Abstract

Oligomers based on amino acids conserved between known plant omega-3 and cyanobacterium omega-6 fatty acid desaturases were used to screen an Arabidopsis cDNA library for related sequences. An identified clone encoding a novel desaturase-like polypeptide was used to isolate its homologs from Glycine max and Brassica napus. The plant deduced amino acid sequences showed less than 27% similarity to known plant omega-6 and omega-3 desaturases but more than 48% similarity to cyanobacterial omega-6 desaturase, and they contained putative plastid transit sequences. Thus, we deduce that the plant cDNAs encode the plastid omega-6 desaturase. The identity was supported by expression of the B. napus cDNA in cyanobacterium. Synechococcus transformed with a chimeric gene that contains a prokaryotic promoter fused to the rapeseed cDNA encoding all but the first 73 amino acids partially converted its oleic acid fatty acid to linoleic acid, and the 16:1(9c) fatty acid was converted primarily to 16:2(9c, 12) in vivo. Thus, the plant omega-6 desaturase, which utilizes 16:1(7c) in plants, can utilize 16:1(9c) in the cyanobacterium. The plastid and cytosolic homologs of plant omega-6 desaturases are much more distantly related than those of omega-3 desaturases.

Full Text

The Full Text of this article is available as a PDF (768.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bustos S. A., Golden S. S. Expression of the psbDII gene in Synechococcus sp. strain PCC 7942 requires sequences downstream of the transcription start site. J Bacteriol. 1991 Dec;173(23):7525–7533. doi: 10.1128/jb.173.23.7525-7533.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fox B. G., Shanklin J., Somerville C., Münck E. Stearoyl-acyl carrier protein delta 9 desaturase from Ricinus communis is a diiron-oxo protein. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2486–2490. doi: 10.1073/pnas.90.6.2486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hein J. Reconstructing evolution of sequences subject to recombination using parsimony. Math Biosci. 1990 Mar;98(2):185–200. doi: 10.1016/0025-5564(90)90123-g. [DOI] [PubMed] [Google Scholar]
  4. Higashi S., Murata N. An in Vivo Study of Substrate Specificities of Acyl-Lipid Desaturases and Acyltransferases in Lipid Synthesis in Synechocystis PCC6803. Plant Physiol. 1993 Aug;102(4):1275–1278. doi: 10.1104/pp.102.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Howling D., Morris L. J., Gurr M. I., James A. T. The specificity of fatty acid desaturases and hydroxylases. The dehydrogenation and hydroxylation of monoenoic acids. Biochim Biophys Acta. 1972 Jan 27;260(1):10–19. doi: 10.1016/0005-2760(72)90068-9. [DOI] [PubMed] [Google Scholar]
  6. Iba K., Gibson S., Nishiuchi T., Fuse T., Nishimura M., Arondel V., Hugly S., Somerville C. A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem. 1993 Nov 15;268(32):24099–24105. [PubMed] [Google Scholar]
  7. Kearns E. V., Hugly S., Somerville C. R. The role of cytochrome b5 in delta 12 desaturation of oleic acid by microsomes of safflower (Carthamus tinctorius L.). Arch Biochem Biophys. 1991 Feb 1;284(2):431–436. doi: 10.1016/0003-9861(91)90319-e. [DOI] [PubMed] [Google Scholar]
  8. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  9. McGeehan G., Burkhart W., Anderegg R., Becherer J. D., Gillikin J. W., Graham J. S. Sequencing and characterization of the soybean leaf metalloproteinase : structural and functional similarity to the matrix metalloproteinase family. Plant Physiol. 1992 Jul;99(3):1179–1183. doi: 10.1104/pp.99.3.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nordlund P., Sjöberg B. M., Eklund H. Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature. 1990 Jun 14;345(6276):593–598. doi: 10.1038/345593a0. [DOI] [PubMed] [Google Scholar]
  11. Okuley J., Lightner J., Feldmann K., Yadav N., Lark E., Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell. 1994 Jan;6(1):147–158. doi: 10.1105/tpc.6.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wada H., Gombos Z., Murata N. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature. 1990 Sep 13;347(6289):200–203. doi: 10.1038/347200a0. [DOI] [PubMed] [Google Scholar]
  13. Wada H., Schmidt H., Heinz E., Murata N. In vitro ferredoxin-dependent desaturation of fatty acids in cyanobacterial thylakoid membranes. J Bacteriol. 1993 Jan;175(2):544–547. doi: 10.1128/jb.175.2.544-547.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yadav N. S., Wierzbicki A., Aegerter M., Caster C. S., Pérez-Grau L., Kinney A. J., Hitz W. D., Booth J. R., Jr, Schweiger B., Stecca K. L. Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol. 1993 Oct;103(2):467–476. doi: 10.1104/pp.103.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES