Abstract
Two distinct cDNA clones encoding carbonic anhydrase (CA) were isolated from an Arabidopsis thaliana lambda YES library. One of these clones, CA1, encodes a 36.1-kD polypeptide and is essentially the same as a previously reported Arabidopsis CA cDNA (C.A. Raines, P.R. Horsnell, C. Holder, J.C. Lloyd [1992] Plant Mol Biol 20: 1143-1148). Comparison of the derived amino acid sequence from this clone with other plant CAs suggests the presence of a chloroplastic transit peptide, which, when cleaved, would render a mature protein of 24.3 kD. The other identified clone, CA2, encodes a 28.3-kD polypeptide, which in addition to other residue changes, is 78 amino acids shorter at the N terminus than the primary product of CA1. The two cDNAs exhibit 76.9% sequence similarity at the DNA level and 84.6% identity between the predicted amino acid sequences. A polyclonal antibody generated against pea CA (N. Majeau, J.R. Coleman [1991] Plant Physiol 100: 1077-1078) hybridized to two protein bands (25 and 28 kD) from a total leaf extract and to only one band (25 kD) from a chloroplastic protein extract. The data suggest that the CA2 protein is an extrachloroplastic form of CA, presumably localized in the cytoplasm. Southern analysis indicated that CA1 and CA2 are encoded by different genes. Northern analysis of total leaf RNA resulted in hybridization of CA1- and CA2-derived probes to two transcripts of 1.47 and 1.2 kb, respectively. These data provide additional evidence that the CA2 clone is a full-length cDNA and that two transcribed CA genes are present in the Arabidopsis genome. Transcript levels of CA1 and CA2 decreased 70 and 20%, respectively, when mature plants were transferred to dark for 24 h. Seedlings germinated in the dark showed CA1 and CA2 transcript abundance levels of 4 and 22%, respectively, when compared with light-germinated seedlings. These data suggest that expression of CA1 is light regulated and dependent of leaf and/or chloroplast development. A possible role for cytoplasmic CA in the plant cell is discussed.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burnell J. N., Gibbs M. J., Mason J. G. Spinach chloroplastic carbonic anhydrase: nucleotide sequence analysis of cDNA. Plant Physiol. 1990 Jan;92(1):37–40. doi: 10.1104/pp.92.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Champigny M. L., Foyer C. Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino Acid biosynthesis: basis for a new concept. Plant Physiol. 1992 Sep;100(1):7–12. doi: 10.1104/pp.100.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang C., Meyerowitz E. M. Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1408–1412. doi: 10.1073/pnas.83.5.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
- Elledge S. J., Mulligan J. T., Ramer S. W., Spottswood M., Davis R. W. Lambda YES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1731–1735. doi: 10.1073/pnas.88.5.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fawcett T. W., Browse J. A., Volokita M., Bartlett S. G. Spinach carbonic anhydrase primary structure deduced from the sequence of a cDNA clone. J Biol Chem. 1990 Apr 5;265(10):5414–5417. [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
- Giuliano G., Pichersky E., Malik V. S., Timko M. P., Scolnik P. A., Cashmore A. R. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7089–7093. doi: 10.1073/pnas.85.19.7089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lomax T. L., Conley P. B., Schilling J., Grossman A. R. Isolation and characterization of light-regulated phycobilisome linker polypeptide genes and their transcription as a polycistronic mRNA. J Bacteriol. 1987 Jun;169(6):2675–2684. doi: 10.1128/jb.169.6.2675-2684.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majeau N., Coleman J. R. Nucleotide sequence of a complementary DNA encoding tobacco chloroplastic carbonic anhydrase. Plant Physiol. 1992 Oct;100(2):1077–1078. doi: 10.1104/pp.100.2.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishimura M., Graham D., Akazawa T. Isolation of intact chloroplasts and other cell organelles from spinach leaf protoplasts. Plant Physiol. 1976 Sep;58(3):309–314. doi: 10.1104/pp.58.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Provart N. J., Majeau N., Coleman J. R. Characterization of pea chloroplastic carbonic anhydrase. Expression in Escherichia coli and site-directed mutagenesis. Plant Mol Biol. 1993 Sep;22(6):937–943. doi: 10.1007/BF00028967. [DOI] [PubMed] [Google Scholar]
- Raines C. A., Horsnell P. R., Holder C., Lloyd J. C. Arabidopsis thaliana carbonic anhydrase: cDNA sequence and effect of CO2 on mRNA levels. Plant Mol Biol. 1992 Dec;20(6):1143–1148. doi: 10.1007/BF00028900. [DOI] [PubMed] [Google Scholar]
- Roeske C. A., Ogren W. L. Nucleotide sequence of pea cDNA encoding chloroplast carbonic anhydrase. Nucleic Acids Res. 1990 Jun 11;18(11):3413–3413. doi: 10.1093/nar/18.11.3413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugiharto B., Burnell J. N., Sugiyama T. Cytokinin Is Required to Induce the Nitrogen-Dependent Accumulation of mRNAs for Phosphoenolpyruvate Carboxylase and Carbonic Anhydrase in Detached Maize Leaves. Plant Physiol. 1992 Sep;100(1):153–156. doi: 10.1104/pp.100.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verwoerd T. C., Dekker B. M., Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989 Mar 25;17(6):2362–2362. doi: 10.1093/nar/17.6.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Y., Kwon H. B., Peng H. P., Shih M. C. Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol. 1993 Jan;101(1):209–216. doi: 10.1104/pp.101.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]