Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Aug;105(4):1037–1042. doi: 10.1104/pp.105.4.1037

Coordination of Chloroplastic Metabolism in N-Limited Chlamydomonas reinhardtii by Redox Modulation (I. The Activation of Phosphoribulosekinase and Glucose-6-Phosphate Dehydrogenase Is Relative to the Photosynthetic Supply of Electrons).

T J Farr 1, H C Huppe 1, D H Turpin 1
PMCID: PMC159430  PMID: 12232263

Abstract

Extraction of Chlamydomonas reinhardtii CW-15 cells by rapid freezing and thawing demonstrates that the in vivo activity of the algal glucose-6-phosphate dehydrogenase (G6PDH) is inhibited by the presence of light and activated in the dark, whereas phosphoribulosekinase (PRK) is light activated and inhibited in the dark. The effects of darkening are reversed by incubation with dithiothreitol (DTT) and mimicked by chemical oxidants, indicating that, as in higher plants, reduction via the ferredoxin-thioredoxin system likely regulates these enzymes. The two enzymes varied in their sensitivity to reduction; the inclusion of 0.5 mM DTT during extraction inhibited G6PDH, whereas PRK required treatment with 40 mM DTT for 1 h to reach maximum activation. The activation change for both enzymes was nearly complete within the 1st min after cells were transferred between light and dark, but the level of activation was relative to the incident light at low intensities; G6PDH activity decreased with increasing light, whereas PRK became more active. The reductive inhibition of G6PDH saturated at very low light, whereas PRK activation kinetics closely followed the increase in photosynthetic oxygen evolution. These results indicate that light-driven redox modulation of G6PDH and PRK is more than an on/off switch, but acts to optimize the reduction and oxidation of carbon in the chloroplast in accordance with the supply of electrons.

Full Text

The Full Text of this article is available as a PDF (581.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchanan B. B. Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys. 1991 Jul;288(1):1–9. doi: 10.1016/0003-9861(91)90157-e. [DOI] [PubMed] [Google Scholar]
  2. Crawford N. A., Droux M., Kosower N. S., Buchanan B. B. Evidence for function of the ferredoxin/thioredoxin system in the reductive activation of target enzymes of isolated intact chloroplasts. Arch Biochem Biophys. 1989 May 15;271(1):223–239. doi: 10.1016/0003-9861(89)90273-7. [DOI] [PubMed] [Google Scholar]
  3. Fickenscher K., Scheibe R. Purification and properties of the cytoplasmic glucose-6-phosphate dehydrogenase from pea leaves. Arch Biochem Biophys. 1986 Jun;247(2):393–402. doi: 10.1016/0003-9861(86)90598-9. [DOI] [PubMed] [Google Scholar]
  4. Flügge U. I., Stitt M., Freisl M., Heldt H. W. On the Participation of Phosphoribulokinase in the Light Regulation of CO(2) Fixation. Plant Physiol. 1982 Jan;69(1):263–267. doi: 10.1104/pp.69.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Roesler K. R., Ogren W. L. Chlamydomonas reinhardtii Phosphoribulokinase : Sequence, Purification, and Kinetics. Plant Physiol. 1990 May;93(1):188–193. doi: 10.1104/pp.93.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Scheibe R., Geissler A., Fickenscher K. Chloroplast glucose-6-phosphate dehydrogenase: Km shift upon light modulation and reduction. Arch Biochem Biophys. 1989 Oct;274(1):290–297. doi: 10.1016/0003-9861(89)90441-4. [DOI] [PubMed] [Google Scholar]
  7. Sueoka N. MITOTIC REPLICATION OF DEOXYRIBONUCLEIC ACID IN CHLAMYDOMONAS REINHARDI. Proc Natl Acad Sci U S A. 1960 Jan;46(1):83–91. doi: 10.1073/pnas.46.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Vanlerberghe G. C., Joy K. W., Turpin D. H. Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum: III. Alanine Is the Product of Anaerobic Ammonium Assimilation. Plant Physiol. 1991 Feb;95(2):655–658. doi: 10.1104/pp.95.2.655. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES