Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Aug;105(4):1049–1057. doi: 10.1104/pp.105.4.1049

Authentic processing and targeting of active maize auxin-binding protein in the baculovirus expression system.

H Macdonald 1, J Henderson 1, R M Napier 1, M A Venis 1, C Hawes 1, C M Lazarus 1
PMCID: PMC159432  PMID: 7972488

Abstract

The major auxin-binding protein (ABP1) from maize (Zea mays L.) has been expressed in insect cells using the baculovirus expression system. The recombinant protein can be readily detected in total insect cell lysates by Coomassie blue staining on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Our data suggest that ABP1 is processed similarly in both insect cells and maize. The signal peptide is cleaved at the same position as in maize and the mature protein undergoes tunicamycin-sensitive glycosylation, yielding a product with the same mobility on SDS-PAGE as authentic maize ABP1. On immunoblots the expressed protein is recognized by anti-KDEL monoclonal antibodies. Immunofluorescence localization demonstrates that it is targeted to and retained in the endoplasmic reticulum of insect cells in accordance with its signal peptide and KDEL retention sequence. The expressed ABP1 also appears to be active, since extracts of insect cells expressing ABP1 contain a saturable high-affinity 1-naphthylacetic acid-binding site, whereas no saturable auxin-binding activity is detected in extracts from control cells.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews D. L., Beames B., Summers M. D., Park W. D. Characterization of the lipid acyl hydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning and abundant expression in a baculovirus vector. Biochem J. 1988 May 15;252(1):199–206. doi: 10.1042/bj2520199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Cross J. W., Briggs W. R. Properties of a Solubilized Microsomal Auxin-binding Protein from Coleoptiles and Primary Leaves of Zea mays. Plant Physiol. 1978 Jul;62(1):152–157. doi: 10.1104/pp.62.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hsieh P., Robbins P. W. Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells. J Biol Chem. 1984 Feb 25;259(4):2375–2382. [PubMed] [Google Scholar]
  5. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  6. Lazarus C. M., Napier R. M., Yu L. X., Lynas C., Venis M. A. Auxin-binding protein--antibodies and genes. Symp Soc Exp Biol. 1991;45:129–148. [PubMed] [Google Scholar]
  7. Löbler M., Klämbt D. Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. Purification by immunological methods and characterization. J Biol Chem. 1985 Aug 15;260(17):9848–9853. [PubMed] [Google Scholar]
  8. Nagai A., Suzuki K., Ward E., Moyer M., Hashimoto M., Mano J., Ohta D., Scheidegger A. Overexpression of plant histidinol dehydrogenase using a baculovirus expression vector system. Arch Biochem Biophys. 1992 Jun;295(2):235–239. doi: 10.1016/0003-9861(92)90512-u. [DOI] [PubMed] [Google Scholar]
  9. Ooi B. G., Rankin C., Miller L. K. Downstream sequences augment transcription from the essential initiation site of a baculovirus polyhedrin gene. J Mol Biol. 1989 Dec 20;210(4):721–736. doi: 10.1016/0022-2836(89)90105-8. [DOI] [PubMed] [Google Scholar]
  10. Palme K., Hesse T., Campos N., Garbers C., Yanofsky M. F., Schell J. Molecular analysis of an auxin binding protein gene located on chromosome 4 of Arabidopsis. Plant Cell. 1992 Feb;4(2):193–201. doi: 10.1105/tpc.4.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pelham H. R. Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:1–23. doi: 10.1146/annurev.cb.05.110189.000245. [DOI] [PubMed] [Google Scholar]
  12. Ray P. M., Dohrmann U. Characterization of naphthaleneacetic Acid binding to receptor sites on cellular membranes of maize coleoptile tissue. Plant Physiol. 1977 Mar;59(3):357–364. doi: 10.1104/pp.59.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schwob E., Choi S. Y., Simmons C., Migliaccio F., Ilag L., Hesse T., Palme K., Söll D. Molecular analysis of three maize 22 kDa auxin-binding protein genes--transient promoter expression and regulatory regions. Plant J. 1993 Sep;4(3):423–432. doi: 10.1046/j.1365-313x.1993.04030423.x. [DOI] [PubMed] [Google Scholar]
  14. Shimomura S., Sotobayashi T., Futai M., Fukui T. Purification and properties of an auxin-binding protein from maize shoot membranes. J Biochem. 1986 May;99(5):1513–1524. doi: 10.1093/oxfordjournals.jbchem.a135621. [DOI] [PubMed] [Google Scholar]
  15. Tillmann U., Viola G., Kayser B., Siemeister G., Hesse T., Palme K., Löbler M., Klämbt D. cDNA clones of the auxin-binding protein from corn coleoptiles (Zea mays L.): isolation and characterization by immunological methods. EMBO J. 1989 Sep;8(9):2463–2467. doi: 10.1002/j.1460-2075.1989.tb08381.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Venis M. A., Napier R. M., Barbier-Brygoo H., Maurel C., Perrot-Rechenmann C., Guern J. Antibodies to a peptide from the maize auxin-binding protein have auxin agonist activity. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7208–7212. doi: 10.1073/pnas.89.15.7208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vernet T., Tessier D. C., Richardson C., Laliberté F., Khouri H. E., Bell A. W., Storer A. C., Thomas D. Y. Secretion of functional papain precursor from insect cells. Requirement for N-glycosylation of the pro-region. J Biol Chem. 1990 Sep 25;265(27):16661–16666. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES