Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Aug;105(4):1089–1096. doi: 10.1104/pp.105.4.1089

Ozone-Induced Expression of Stress-Related Genes in Arabidopsis thaliana.

Y K Sharma 1, K R Davis 1
PMCID: PMC159436  PMID: 12232267

Abstract

Ozone is a major gaseous pollutant that is known to have detrimental effects on plant growth and metabolism. We have investigated the effects of ozone on Arabidopsis thaliana growth and the pattern of expression of several stress-related genes. A. thaliana plants treated with either 150 or 300 parts per billion (ppb) ozone daily for 6 h exhibited reduced growth and leaf curling. Fresh and dry weights of ozone-treated plants were reduced 30 to 48% compared to ambient air controls. RNA blot analyses demonstrated that mRNA levels for glutathione S-transferase (GST), phenylalanine ammonia-lyase (PAL), a neutral peroxidase, and a cytosolic Cu/Zn superoxide dismutase (SOD) were higher in plants treated with 300 ppb ozone than in ambient air-treated controls. The mRNA levels of lipoxygenase and a catalase were not affected by ozone treatment. Of the transcripts examined, GST mRNA levels increased the most, showing a 26-fold induction 3 h after the initiation of ozone treatment. PAL mRNA was also rapidly induced, reaching 3-fold higher levels than controls within 3 h of ozone treatment. The neutral peroxidase and SOD mRNA levels rose more slowly, with both reaching maximum levels corresponding to 5-fold and 3-fold induction, respectively, approximately 12 h after ozone treatment. These studies indicate that ozone-induced expression of stress-related genes in A. thaliana provides an excellent model system for investigating the molecular and genetic basis of ozone-induced responses in plants.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell E., Mullet J. E. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol. 1993 Dec;103(4):1133–1137. doi: 10.1104/pp.103.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
  4. Ecker J. R., Davis R. W. Plant defense genes are regulated by ethylene. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5202–5206. doi: 10.1073/pnas.84.15.5202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ernst D., Schraudner M., Langebartels C., Sandermann H., Jr Ozone-induced changes of mRNA levels of beta-1,3-glucanase, chitinase and 'pathogenesis-related' protein 1b in tobacco plants. Plant Mol Biol. 1992 Nov;20(4):673–682. doi: 10.1007/BF00046452. [DOI] [PubMed] [Google Scholar]
  6. Grimes H. D., Perkins K. K., Boss W. F. Ozone Degrades into Hydroxyl Radical under Physiological Conditions : A Spin Trapping Study. Plant Physiol. 1983 Aug;72(4):1016–1020. doi: 10.1104/pp.72.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gundlach H., Müller M. J., Kutchan T. M., Zenk M. H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2389–2393. doi: 10.1073/pnas.89.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gupta A. S., Alscher R. G., McCune D. Response of photosynthesis and cellular antioxidants to ozone in populus leaves. Plant Physiol. 1991 Jun;96(2):650–655. doi: 10.1104/pp.96.2.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hindges R., Slusarenko A. cDNA and derived amino acid sequence of a cytosolic Cu,Zn superoxide dismutase from Arabidopsis thaliana (L.) Heyhn. Plant Mol Biol. 1992 Jan;18(1):123–125. doi: 10.1007/BF00018463. [DOI] [PubMed] [Google Scholar]
  10. Intapruk C., Higashimura N., Yamamoto K., Okada N., Shinmyo A., Takano M. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana. Gene. 1991 Feb 15;98(2):237–241. doi: 10.1016/0378-1119(91)90179-f. [DOI] [PubMed] [Google Scholar]
  11. Kieber J. J., Ecker J. R. Ethylene gas: it's not just for ripening any more! Trends Genet. 1993 Oct;9(10):356–362. doi: 10.1016/0168-9525(93)90041-f. [DOI] [PubMed] [Google Scholar]
  12. Maccarrone M., Veldink G. A., Vliegenthart J. F. Thermal injury and ozone stress affect soybean lipoxygenases expression. FEBS Lett. 1992 Sep 14;309(3):225–230. doi: 10.1016/0014-5793(92)80778-f. [DOI] [PubMed] [Google Scholar]
  13. Melan M. A., Dong X., Endara M. E., Davis K. R., Ausubel F. M., Peterman T. K. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 1993 Feb;101(2):441–450. doi: 10.1104/pp.101.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peters J. L., Castillo F. J., Heath R. L. Alteration of Extracellular Enzymes in Pinto Bean Leaves upon Exposure to Air Pollutants, Ozone and Sulfur Dioxide. Plant Physiol. 1989 Jan;89(1):159–164. doi: 10.1104/pp.89.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pitcher L. H., Brennan E., Hurley A., Dunsmuir P., Tepperman J. M., Zilinskas B. A. Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol. 1991 Sep;97(1):452–455. doi: 10.1104/pp.97.1.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pitcher L. H., Brennan E., Zilinskas B. A. The Antiozonant Ethylenediurea Does Not Act via Superoxide Dismutase Induction in Bean. Plant Physiol. 1992 Aug;99(4):1388–1392. doi: 10.1104/pp.99.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rosemann D., Heller W., Sandermann H. Biochemical Plant Responses to Ozone : II. Induction of Stilbene Biosynthesis in Scots Pine (Pinus sylvestris L.) Seedlings. Plant Physiol. 1991 Dec;97(4):1280–1286. doi: 10.1104/pp.97.4.1280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Scandalios J. G. Response of plant antioxidant defense genes to environmental stress. Adv Genet. 1990;28:1–41. doi: 10.1016/s0065-2660(08)60522-2. [DOI] [PubMed] [Google Scholar]
  19. Wanner L. A., Gruissem W. Expression dynamics of the tomato rbcS gene family during development. Plant Cell. 1991 Dec;3(12):1289–1303. doi: 10.1105/tpc.3.12.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zhou J., Goldsbrough P. B. An Arabidopsis gene with homology to glutathione S-transferases is regulated by ethylene. Plant Mol Biol. 1993 Jun;22(3):517–523. doi: 10.1007/BF00015980. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES