Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Aug;105(4):1179–1187. doi: 10.1104/pp.105.4.1179

Characterization of a salt-responsive 24-kilodalton glycoprotein in Mesembryanthemum crystallinum.

H E Yen 1, G E Edwards 1, H D Grimes 1
PMCID: PMC159446  PMID: 7972493

Abstract

A concanavalin A (Con A)-binding polypeptide with a molecular mass of 24 kD (termed "SRgp24") was associated with the intercellular space of Mesembryanthemum crystallinum L. callus. When callus was grown in medium containing between 0 and 100 mM NaCl, SRgp24 was detected by Con A binding. Increasing the NaCl concentration to 200 mM caused a reduction in the amount of SRgp24 within 3 d, and returning the callus to medium without salt resulted in an accumulation of SRgp24. Immunoblot analysis showed that appreciable amounts of SRgp24 accumulated in the leaves when plants were grown under sodium-limiting conditions. Unlike most of the cell-wall Con A-binding proteins in M. crystallinum callus, the carbohydrate moiety of SRgp24 was resistant to endoglycosidase H digestion. After purification of SRgp24, the N terminus was sequenced and found to share 55 to 60% identity with the N terminus of osmotin, a group 5 pathogenesis-related protein (PR-5) that accumulates in salt-adapted tobacco cell suspension. Immunocytochemical assays, with affinity-purified antibodies to SRgp24, indicated that SRgp24 preferentially accumulated in the cell-wall region. We conclude that SRgp24 is a salt-responsive glycoprotein related to the PR-5 family in M. crystallinum.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bozarth C. S., Mullet J. E., Boyer J. S. Cell wall proteins at low water potentials. Plant Physiol. 1987 Sep;85(1):261–267. doi: 10.1104/pp.85.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chu C., Dai Z., Ku M. S., Edwards G. E. Induction of Crassulacean Acid Metabolism in the Facultative Halophyte Mesembryanthemum crystallinum by Abscisic Acid. Plant Physiol. 1990 Jul;93(3):1253–1260. doi: 10.1104/pp.93.3.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cornelissen B. J., Hooft van Huijsduijnen R. A., Bol J. F. A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. 1986 May 29-Jun 4Nature. 321(6069):531–532. doi: 10.1038/321531a0. [DOI] [PubMed] [Google Scholar]
  4. Grimes H. D., Breidenbach R. W. Plant plasma membrane proteins : immunological characterization of a major 75 kilodalton protein group. Plant Physiol. 1987 Dec;85(4):1048–1054. doi: 10.1104/pp.85.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hurkman W. J., Tanaka C. K., Dupont F. M. The effects of salt stress on polypeptides in membrane fractions from barley roots. Plant Physiol. 1988 Dec;88(4):1263–1273. doi: 10.1104/pp.88.4.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hurkman W. J., Tanaka C. K. The effects of salt on the pattern of protein synthesis in barley roots. Plant Physiol. 1987 Mar;83(3):517–524. doi: 10.1104/pp.83.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iraki N. M., Bressan R. A., Carpita N. C. Extracellular polysaccharides and proteins of tobacco cell cultures and changes in composition associated with growth-limiting adaptation to water and saline stress. Plant Physiol. 1989 Sep;91(1):54–61. doi: 10.1104/pp.91.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Larosa P. C., Singh N. K., Hasegawa P. M., Bressan R. A. Stable NaCl Tolerance of Tobacco Cells Is Associated with Enhanced Accumulation of Osmotin. Plant Physiol. 1989 Nov;91(3):855–861. doi: 10.1104/pp.91.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neale A. D., Wahleithner J. A., Lund M., Bonnett H. T., Kelly A., Meeks-Wagner D. R., Peacock W. J., Dennis E. S. Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell. 1990 Jul;2(7):673–684. doi: 10.1105/tpc.2.7.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rabilloud T., Carpentier G., Tarroux P. Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis. 1988 Jun;9(6):288–291. doi: 10.1002/elps.1150090608. [DOI] [PubMed] [Google Scholar]
  11. Reviron M. P., Vartanian N., Sallantin M., Huet J. C., Pernollet J. C., de Vienne D. Characterization of a Novel Protein Induced by Progressive or Rapid Drought and Salinity in Brassica napus Leaves. Plant Physiol. 1992 Nov;100(3):1486–1493. doi: 10.1104/pp.100.3.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Richard L., Arró M., Hoebeke J., Meeks-Wagner D. R., Van K. T. Immunological Evidence of Thaumatin-Like Proteins during Tobacco Floral Differentiation. Plant Physiol. 1992 Jan;98(1):337–342. doi: 10.1104/pp.98.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Singh N. K., Handa A. K., Hasegawa P. M., Bressan R. A. Proteins Associated with Adaptation of Cultured Tobacco Cells to NaCl. Plant Physiol. 1985 Sep;79(1):126–137. doi: 10.1104/pp.79.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Singh N. K., Larosa P. C., Handa A. K., Hasegawa P. M., Bressan R. A. Hormonal regulation of protein synthesis associated with salt tolerance in plant cells. Proc Natl Acad Sci U S A. 1987 Feb;84(3):739–743. doi: 10.1073/pnas.84.3.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thomas J. C., Bohnert H. J. Salt Stress Perception and Plant Growth Regulators in the Halophyte Mesembryanthemum crystallinum. Plant Physiol. 1993 Dec;103(4):1299–1304. doi: 10.1104/pp.103.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES