Abstract
Three abscisic acid (ABA)-controlled responses (seed dormancy, inhibition of germination by applied ABA, and stomatal closure) were compared in wild-type versus homo- and heterozygotes of two Arabidopsis thaliana ABA-insensitive mutants, abi1 and abi2. We found that sensitivity of seeds to applied ABA is partially maternally controlled but that seed dormancy is determined by the embryonic genotype. The effects of the abi1 and abi2 mutations on ABA sensitivity of seed germination ranged from recessive to nearly fully dominant, depending on the parental source of the mutant allele. This maternal effect disappeared during vegetative growth. Stomatal regulation in heterozygotes showed substantial variability, but the average water loss was intermediate between that of homozygous mutants and wild type.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Harberd N. P., Freeling M. Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics. 1989 Apr;121(4):827–838. doi: 10.1093/genetics/121.4.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keith K., Kraml M., Dengler N. G., McCourt P. fusca3: A Heterochronic Mutation Affecting Late Embryo Development in Arabidopsis. Plant Cell. 1994 May;6(5):589–600. doi: 10.1105/tpc.6.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson A. K., Pickett F. B., Turner J. C., Estelle M. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet. 1990 Jul;222(2-3):377–383. doi: 10.1007/BF00633843. [DOI] [PubMed] [Google Scholar]