Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Aug;105(4):1375–1383. doi: 10.1104/pp.105.4.1375

Catalase Is Differentially Expressed in Dividing and Nondividing Protoplasts.

C I Siminis 1, A K Kanellis 1, K A Roubelakis-Angelakis 1
PMCID: PMC159470  PMID: 12232292

Abstract

Based on our previous results that peroxidase is induced in dividing tobacco protoplasts but it is not expressed in the nondividing grapevine (Vitis vinifera L.) protoplasts during culture (C.I. Siminis, A.K. Kanellis, K.A. Roubelakis-Angelakis [1993] Physiol Plant 87: 263-270), we further tested the hypothesis that oxidative stress may be implicated in the recalcitrance of plant protoplasts. The expression of catalase, a major defense enzyme against cell oxidation, was studied during isolation and culture of mesophyll protoplasts from the recalcitrant grapevine and regenerating tobacco (Nicotiana tabacum L.). Incubation of tobacco leaf strips with cell wall-degrading enzymes resulted in a burst of catalase activity and an increase in its immunoreactive protein; in contrast, no such increases were found in grapevine. The cathodic and anodic catalase isoforms consisted exclusively of subunits [alpha] and [beta], respectively, in tobacco, and of subunits [beta] and [alpha], respectively, in grapevine. The catalase specific activity increased only in grapevine protoplasts during culture. The ratio of the enzymatic activities to the catalase immunoreactive protein declined in dividing tobacco protoplasts and remained fairly constant in nondividing tobacco and grapevine protoplasts during culture. Also, in dividing tobacco protoplasts the de novo accumulation of the catalase [beta] subunit gave rise to the acidic isoenzymes, whereas in nondividing tobacco and grapevine protoplasts, after 8 d in culture, only the basic isoenzymes remained due to de novo accumulation of the [alpha] subunit. The pattern of catalase expression in proliferating tobacco leaf cells during callogenesis was similar to that in dividing protoplasts. The different responses of catalase expression in dividing and nondividing tobacco and grapevine mesophyll protoplasts may indicate a specificity of catalase related to induction of totipotency.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clare D. A., Duong M. N., Darr D., Archibald F., Fridovich I. Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem. 1984 Aug 1;140(2):532–537. doi: 10.1016/0003-2697(84)90204-5. [DOI] [PubMed] [Google Scholar]
  3. Grosset J., Marty I., Chartier Y., Meyer Y. mRNAs newly synthesized by tobacco mesophyll protoplasts are wound-inducible. Plant Mol Biol. 1990 Sep;15(3):485–496. doi: 10.1007/BF00019165. [DOI] [PubMed] [Google Scholar]
  4. Havir E. A., McHale N. A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 1987 Jun;84(2):450–455. doi: 10.1104/pp.84.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  6. Ni W., Trelease R. N., Eising R. Two temporally synthesized charge subunits interact to form the five isoforms of cottonseed (Gossypium hirsutum) catalase. Biochem J. 1990 Jul 1;269(1):233–238. doi: 10.1042/bj2690233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ni W., Trelease R. N. Post-Transcriptional Regulation of Catalase Isozyme Expression in Cotton Seeds. Plant Cell. 1991 Jul;3(7):737–744. doi: 10.1105/tpc.3.7.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Redinbaugh M. G., Sabre M., Scandalios J. G. The distribution of catalase activity, isozyme protein, and transcript in the tissues of the developing maize seedling. Plant Physiol. 1990 Feb;92(2):375–380. doi: 10.1104/pp.92.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Robertson E. F., Dannelly H. K., Malloy P. J., Reeves H. C. Rapid isoelectric focusing in a vertical polyacrylamide minigel system. Anal Biochem. 1987 Dec;167(2):290–294. doi: 10.1016/0003-2697(87)90166-7. [DOI] [PubMed] [Google Scholar]
  10. Scandalios J. G. The antioxidant enzyme genes Cat and Sod of maize: regulation, functional significance, and molecular biology. Isozymes Curr Top Biol Med Res. 1987;14:19–44. [PubMed] [Google Scholar]
  11. Zelitch I., Havir E. A., McGonigle B., McHale N. A., Nelson T. Leaf catalase mRNA and catalase-protein levels in a high-catalase tobacco mutant with o(2)-resistant photosynthesis. Plant Physiol. 1991 Dec;97(4):1592–1595. doi: 10.1104/pp.97.4.1592. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES