Abstract
Cotyledon expansion in response to blue light was compared for wild-type Arabidopsis thaliana (L.) Heynh. and the mutants blu3 and hy4, which show reduced inhibition of hypocotyl growth in blue light. White, blue, and red light stimulated cotyledon expansion in both intact and excised cotyledons of wild-type seedlings (ecotypes No-0, WS, Co-0, La-er). Cotyledons on intact blu3 and hy4 seedlings did not grow as well as those on the wild type in response to blue light, but pretreatment of blu3 seedlings with low fluence rates of red light increased their responsiveness to blue light. Excision of cotyledons alleviated the mutant phenotype so that both mutant and wild-type cotyledons grew equally well in blue light. The loss of the mutant cotyledon phenotype upon excision indicates that the blu3 and hy4 lesions affect cotyledon expansion indirectly via a whole-plant response to light. Furthermore, the ability of excised, mutant cotyledons to grow normally in blue light shows that this growth response to blue light is mediated by a photosystem other than the ones impaired by the blu3 and hy4 lesions.
Full Text
The Full Text of this article is available as a PDF (427.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
- Cosgrove D. J. Rapid Suppression of Growth by Blue Light: OCCURRENCE, TIME COURSE, AND GENERAL CHARACTERISTICS. Plant Physiol. 1981 Mar;67(3):584–590. doi: 10.1104/pp.67.3.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neff M. M., Van Volkenburgh E. Light-Stimulated Cotyledon Expansion in Arabidopsis Seedlings (The Role of Phytochrome B). Plant Physiol. 1994 Mar;104(3):1027–1032. doi: 10.1104/pp.104.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Volkenburgh E., Cleland R. E. Light-stimulated cell expansion in bean (Phaseolus vulgaris L.) leaves. I. Growth can occur without photosynthesis. Planta. 1990 Aug;182(1):72–76. doi: 10.1007/BF00239986. [DOI] [PubMed] [Google Scholar]