Abstract
The vertebrate inner ear forms a highly complex sensory structure responsible for the detection of sound and balance. Some new aspects on the evolutionary and developmental origin of the inner ear are summarised here. Recent molecular data have challenged the longstanding view that special sense organs such as the inner ear have evolved with the appearance of vertebrates. In addition, it has remained unclear whether the ear originally arose through a modification of the amphibian mechanosensory lateral line system or whether both evolved independently. A comparison of the developmental mechanisms giving rise to both sensory systems in different species should help to clarify some of these controversies. During embryonic development, the inner ear arises from a simple epithelium adjacent to the hindbrain, the otic placode, that is specified through inductive interactions with surrounding tissues. This review summarises the embryological evidence showing that the induction of the otic placode is a multistep process which requires sequential interaction of different tissues with the future otic ectoderm and the recent progress that has been made to identify some of the molecular players involved. Finally, the hypothesis is discussed that induction of all sensory placodes initially shares a common molecular pathway, which may have been responsible to generate an ‘ancestral placode’ during evolution.
Keywords: Chordates, sensory placode, placode field
Full Text
The Full Text of this article is available as a PDF (130.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamska M., Léger S., Brand M., Hadrys T., Braun T., Bober E. Inner ear and lateral line expression of a zebrafish Nkx5-1 gene and its downregulation in the ears of FGF8 mutant, ace. Mech Dev. 2000 Oct;97(1-2):161–165. doi: 10.1016/s0925-4773(00)00414-7. [DOI] [PubMed] [Google Scholar]
- Baird I. L. Some aspects of the comparative anatomy and evolution of the inner ear in submammalian vertebrates. Brain Behav Evol. 1974;10(1-3):11–36. doi: 10.1159/000124300. [DOI] [PubMed] [Google Scholar]
- Baker C. V., Bronner-Fraser M. Vertebrate cranial placodes I. Embryonic induction. Dev Biol. 2001 Apr 1;232(1):1–61. doi: 10.1006/dbio.2001.0156. [DOI] [PubMed] [Google Scholar]
- Butler A. B. Sensory system evolution at the origin of craniates. Philos Trans R Soc Lond B Biol Sci. 2000 Sep 29;355(1401):1309–1313. doi: 10.1098/rstb.2000.0690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chisaka O., Musci T. S., Capecchi M. R. Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature. 1992 Feb 6;355(6360):516–520. doi: 10.1038/355516a0. [DOI] [PubMed] [Google Scholar]
- Dupé V., Ghyselinck N. B., Wendling O., Chambon P., Mark M. Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development. 1999 Nov;126(22):5051–5059. doi: 10.1242/dev.126.22.5051. [DOI] [PubMed] [Google Scholar]
- Gallagher B. C., Henry J. J., Grainger R. M. Inductive processes leading to inner ear formation during Xenopus development. Dev Biol. 1996 Apr 10;175(1):95–107. doi: 10.1006/dbio.1996.0098. [DOI] [PubMed] [Google Scholar]
- Gavalas A., Studer M., Lumsden A., Rijli F. M., Krumlauf R., Chambon P. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development. 1998 Mar;125(6):1123–1136. doi: 10.1242/dev.125.6.1123. [DOI] [PubMed] [Google Scholar]
- Giraldez F. Regionalized organizing activity of the neural tube revealed by the regulation of lmx1 in the otic vesicle. Dev Biol. 1998 Nov 1;203(1):189–200. doi: 10.1006/dbio.1998.9023. [DOI] [PubMed] [Google Scholar]
- Graham A., Begbie J. Neurogenic placodes: a common front. Trends Neurosci. 2000 Jul;23(7):313–316. doi: 10.1016/s0166-2236(00)01606-4. [DOI] [PubMed] [Google Scholar]
- Groves A. K., Bronner-Fraser M. Competence, specification and commitment in otic placode induction. Development. 2000 Aug;127(16):3489–3499. doi: 10.1242/dev.127.16.3489. [DOI] [PubMed] [Google Scholar]
- Herbrand H., Guthrie S., Hadrys T., Hoffmann S., Arnold H. H., Rinkwitz-Brandt S., Bober E. Two regulatory genes, cNkx5-1 and cPax2, show different responses to local signals during otic placode and vesicle formation in the chick embryo. Development. 1998 Feb;125(4):645–654. doi: 10.1242/dev.125.4.645. [DOI] [PubMed] [Google Scholar]
- Hume C. R., Dodd J. Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization. Development. 1993 Dec;119(4):1147–1160. doi: 10.1242/dev.119.4.1147. [DOI] [PubMed] [Google Scholar]
- JACOBSON A. G. THE DETERMINATION AND POSITIONING OF THE NOSE, LENS AND EAR. I. INTERACTIONS WITHIN THE ECTODERM, AND BETWEEN THE ECTODERM AND UNDERLYING TISSUES. J Exp Zool. 1963 Dec;154:273–283. doi: 10.1002/jez.1401540303. [DOI] [PubMed] [Google Scholar]
- JACOBSON A. G. THE DETERMINATION AND POSITIONING OF THE NOSE, LENS AND EAR. II. THE ROLE OF THE ENDODERM. J Exp Zool. 1963 Dec;154:285–291. doi: 10.1002/jez.1401540304. [DOI] [PubMed] [Google Scholar]
- JACOBSON A. G. THE DETERMINATION AND POSITIONING OF THE NOSE, LENS AND EAR. III. EFFECTS OF REVERSING THE ANTERO-POSTERIOR AXIS OF EPIDERMIS, NEURAL PLATE AND NEURAL FOLD. J Exp Zool. 1963 Dec;154:293–303. doi: 10.1002/jez.1401540305. [DOI] [PubMed] [Google Scholar]
- Jacobson A. G. Inductive processes in embryonic development. Science. 1966 Apr 1;152(3718):25–34. doi: 10.1126/science.152.3718.25. [DOI] [PubMed] [Google Scholar]
- Kozmik Z., Holland N. D., Kalousova A., Paces J., Schubert M., Holland L. Z. Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development. 1999 Mar;126(6):1295–1304. doi: 10.1242/dev.126.6.1295. [DOI] [PubMed] [Google Scholar]
- Kuratani S. C., Eichele G. Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein. Development. 1993 Jan;117(1):105–117. doi: 10.1242/dev.117.1.105. [DOI] [PubMed] [Google Scholar]
- Ladher R. K., Anakwe K. U., Gurney A. L., Schoenwolf G. C., Francis-West P. H. Identification of synergistic signals initiating inner ear development. Science. 2000 Dec 8;290(5498):1965–1967. doi: 10.1126/science.290.5498.1965. [DOI] [PubMed] [Google Scholar]
- Lombardo A., Isaacs H. V., Slack J. M. Expression and functions of FGF-3 in Xenopus development. Int J Dev Biol. 1998 Nov;42(8):1101–1107. [PubMed] [Google Scholar]
- Lombardo A., Slack J. M. Postgastrulation effects of fibroblast growth factor on Xenopus development. Dev Dyn. 1998 May;212(1):75–85. doi: 10.1002/(SICI)1097-0177(199805)212:1<75::AID-AJA7>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Lufkin T., Dierich A., LeMeur M., Mark M., Chambon P. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell. 1991 Sep 20;66(6):1105–1119. doi: 10.1016/0092-8674(91)90034-v. [DOI] [PubMed] [Google Scholar]
- Mahmood R., Mason I. J., Morriss-Kay G. M. Expression of Fgf-3 in relation to hindbrain segmentation, otic pit position and pharyngeal arch morphology in normal and retinoic acid-exposed mouse embryos. Anat Embryol (Berl) 1996 Jul;194(1):13–22. doi: 10.1007/BF00196311. [DOI] [PubMed] [Google Scholar]
- Mansour S. L. Targeted disruption of int-2 (fgf-3) causes developmental defects in the tail and inner ear. Mol Reprod Dev. 1994 Sep;39(1):62–68. doi: 10.1002/mrd.1080390111. [DOI] [PubMed] [Google Scholar]
- McKay I. J., Lewis J., Lumsden A. The role of FGF-3 in early inner ear development: an analysis in normal and kreisler mutant mice. Dev Biol. 1996 Mar 15;174(2):370–378. doi: 10.1006/dbio.1996.0081. [DOI] [PubMed] [Google Scholar]
- Mendonsa E. S., Riley B. B. Genetic analysis of tissue interactions required for otic placode induction in the zebrafish. Dev Biol. 1999 Feb 1;206(1):100–112. doi: 10.1006/dbio.1998.9134. [DOI] [PubMed] [Google Scholar]
- Northcutt R. G., Gans C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol. 1983 Mar;58(1):1–28. doi: 10.1086/413055. [DOI] [PubMed] [Google Scholar]
- Orts F., Jimenez-Collado L., Jimenez-Collado J. Regulation of the embryo after the extirpation of Hensen's node. Consequences on the differentiation of the otic placode. Arch Anat Histol Embryol. 1971;54(1):1–11. [PubMed] [Google Scholar]
- Popper A. N., Fay R. R. Evolution of the ear and hearing: issues and questions. Brain Behav Evol. 1997;50(4):213–221. doi: 10.1159/000113335. [DOI] [PubMed] [Google Scholar]
- Represa J., León Y., Miner C., Giraldez F. The int-2 proto-oncogene is responsible for induction of the inner ear. Nature. 1991 Oct 10;353(6344):561–563. doi: 10.1038/353561a0. [DOI] [PubMed] [Google Scholar]
- Schlosser G., Northcutt R. G. Development of neurogenic placodes in Xenopus laevis. J Comp Neurol. 2000 Mar 6;418(2):121–146. [PubMed] [Google Scholar]
- Sechrist J., Scherson T., Bronner-Fraser M. Rhombomere rotation reveals that multiple mechanisms contribute to the segmental pattern of hindbrain neural crest migration. Development. 1994 Jul;120(7):1777–1790. doi: 10.1242/dev.120.7.1777. [DOI] [PubMed] [Google Scholar]
- Shimeld S. M., Holland P. W. Vertebrate innovations. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4449–4452. doi: 10.1073/pnas.97.9.4449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson G. J., Howard M., Lewis J. Epithelial autonomy in the development of the inner ear of a bird embryo. Dev Biol. 1990 Feb;137(2):243–257. doi: 10.1016/0012-1606(90)90251-d. [DOI] [PubMed] [Google Scholar]
- Tannahill D., Isaacs H. V., Close M. J., Peters G., Slack J. M. Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction. Development. 1992 Jul;115(3):695–702. doi: 10.1242/dev.115.3.695. [DOI] [PubMed] [Google Scholar]
- Torres M., Giráldez F. The development of the vertebrate inner ear. Mech Dev. 1998 Feb;71(1-2):5–21. doi: 10.1016/s0925-4773(97)00155-x. [DOI] [PubMed] [Google Scholar]
- Van Bergeijk W. A. The evolution of vertebrate hearing. Contrib Sens Physiol. 1967;2:1–49. doi: 10.1016/b978-1-4831-6749-7.50007-6. [DOI] [PubMed] [Google Scholar]
- Vendrell V., Carnicero E., Giraldez F., Alonso M. T., Schimmang T. Induction of inner ear fate by FGF3. Development. 2000 May;127(10):2011–2019. doi: 10.1242/dev.127.10.2011. [DOI] [PubMed] [Google Scholar]
- Wada H., Saiga H., Satoh N., Holland P. W. Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development. 1998 Mar;125(6):1113–1122. doi: 10.1242/dev.125.6.1113. [DOI] [PubMed] [Google Scholar]
- Whitfield T. T., Granato M., van Eeden F. J., Schach U., Brand M., Furutani-Seiki M., Haffter P., Hammerschmidt M., Heisenberg C. P., Jiang Y. J. Mutations affecting development of the zebrafish inner ear and lateral line. Development. 1996 Dec;123:241–254. doi: 10.1242/dev.123.1.241. [DOI] [PubMed] [Google Scholar]
- Wilkinson D. G., Peters G., Dickson C., McMahon A. P. Expression of the FGF-related proto-oncogene int-2 during gastrulation and neurulation in the mouse. EMBO J. 1988 Mar;7(3):691–695. doi: 10.1002/j.1460-2075.1988.tb02864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winklbauer R. Development of the lateral line system in Xenopus. Prog Neurobiol. 1989;32(3):181–206. doi: 10.1016/0301-0082(89)90016-6. [DOI] [PubMed] [Google Scholar]
- Woo K., Fraser S. E. Specification of the zebrafish nervous system by nonaxial signals. Science. 1997 Jul 11;277(5323):254–257. doi: 10.1126/science.277.5323.254. [DOI] [PubMed] [Google Scholar]