Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Jul-Aug;199(Pt 1-2):35–52. doi: 10.1046/j.1469-7580.2001.19910035.x

Evolution of vertebrate forebrain development: how many different mechanisms?

ANN C FOLEY 1, CLAUDIO D STERN 1,
PMCID: PMC1594957  PMID: 11523828

Abstract

Over the past 50 years and more, many models have been proposed to explain how the nervous system is initially induced and how it becomes subdivided into gross regions such as forebrain, midbrain, hindbrain and spinal cord. Among these models is the 2-signal model of Nieuwkoop & Nigtevecht (1954), who suggested that an initial signal (‘activation’) from the organiser both neuralises and specifies the forebrain, while later signals (‘transformation’) from the same region progressively caudalise portions of this initial territory. An opposing idea emerged from the work of Otto Mangold (1933) and other members of the Spemann laboratory: 2 or more distinct organisers, emitting different signals, were proposed to be responsible for inducing the head, trunk and tail regions. Since then, evidence has accumulated that supports one or the other model, but it has been very difficult to distinguish between them. Recently, a considerable body of work from mouse embryos has been interpreted as favouring the latter model, and as suggesting that a ‘head organiser’, required for the induction of the forebrain, is spatially separate from the classic organiser (Hensen's node). An extraembryonic tissue, the ‘anterior visceral endoderm’ (AVE), was proposed to be the source of forebrain-inducing signals. It is difficult to find tissues that are directly equivalent embryologically or functionally to the AVE in other vertebrates, which led some (e.g. Kessel, 1998) to propose that mammals have evolved a new way of patterning the head. We will present evidence from the chick embryo showing that the hypoblast is embryologically and functionally equivalent to the mouse AVE. Like the latter, the hypoblast also plays a role in head development. However, it does not act like a true organiser. It induces pre-neural and pre-forebrain markers, but only transiently. Further development of neural and forebrain phenotypes requires additional signals not provided by the hypoblast. In addition, the hypoblast plays a role in directing cell movements in the adjacent epiblast. These movements distance the future forebrain territory from the developing organiser (Hensen's node), and we suggest that this is a mechanism to protect the forebrain from caudalising signals from the node. These mechanisms are consistent with all the findings obtained from the mouse to date. We conclude that the mechanisms responsible for setting up the forebrain and more caudal regions of the nervous system are probably similar among different classes of higher vertebrates. Moreover, while reconciling the two main models, our findings provide stronger support for Nieuwkoop's ideas than for the concept of multiple organisers, each inducing a distinct region of the CNS.

Keywords: Neural induction, regionalisation, forebrain, head organiser, Hensen's node, hypoblast, anterior visceral endoderm

Full Text

The Full Text of this article is available as a PDF (406.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acampora D., Avantaggiato V., Tuorto F., Briata P., Corte G., Simeone A. Visceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation. Development. 1998 Dec;125(24):5091–5104. doi: 10.1242/dev.125.24.5091. [DOI] [PubMed] [Google Scholar]
  2. Acampora D., Mazan S., Lallemand Y., Avantaggiato V., Maury M., Simeone A., Brûlet P. Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Development. 1995 Oct;121(10):3279–3290. doi: 10.1242/dev.121.10.3279. [DOI] [PubMed] [Google Scholar]
  3. Amaya E., Musci T. J., Kirschner M. W. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell. 1991 Jul 26;66(2):257–270. doi: 10.1016/0092-8674(91)90616-7. [DOI] [PubMed] [Google Scholar]
  4. Ang S. L., Conlon R. A., Jin O., Rossant J. Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development. 1994 Oct;120(10):2979–2989. doi: 10.1242/dev.120.10.2979. [DOI] [PubMed] [Google Scholar]
  5. Ang S. L., Jin O., Rhinn M., Daigle N., Stevenson L., Rossant J. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development. 1996 Jan;122(1):243–252. doi: 10.1242/dev.122.1.243. [DOI] [PubMed] [Google Scholar]
  6. Ang S. L., Rossant J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell. 1994 Aug 26;78(4):561–574. doi: 10.1016/0092-8674(94)90522-3. [DOI] [PubMed] [Google Scholar]
  7. Ang S. L., Wierda A., Wong D., Stevens K. A., Cascio S., Rossant J., Zaret K. S. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development. 1993 Dec;119(4):1301–1315. doi: 10.1242/dev.119.4.1301. [DOI] [PubMed] [Google Scholar]
  8. Avantaggiato V., Acampora D., Tuorto F., Simeone A. Retinoic acid induces stage-specific repatterning of the rostral central nervous system. Dev Biol. 1996 May 1;175(2):347–357. doi: 10.1006/dbio.1996.0120. [DOI] [PubMed] [Google Scholar]
  9. Azar Y., Eyal-Giladi H. Interaction of epiblast and hypoblast in the formation of the primitive streak and the embryonic axis in chick, as revealed by hypoblast-rotation experiments. J Embryol Exp Morphol. 1981 Feb;61:133–144. [PubMed] [Google Scholar]
  10. Azar Y., Eyal-Giladi H. Marginal zone cells--the primitive streak-inducing component of the primary hypoblast in the chick. J Embryol Exp Morphol. 1979 Aug;52:79–88. [PubMed] [Google Scholar]
  11. Bally-Cuif L., Gulisano M., Broccoli V., Boncinelli E. c-otx2 is expressed in two different phases of gastrulation and is sensitive to retinoic acid treatment in chick embryo. Mech Dev. 1995 Jan;49(1-2):49–63. doi: 10.1016/0925-4773(94)00301-3. [DOI] [PubMed] [Google Scholar]
  12. Beddington R. S. Induction of a second neural axis by the mouse node. Development. 1994 Mar;120(3):613–620. doi: 10.1242/dev.120.3.613. [DOI] [PubMed] [Google Scholar]
  13. Beddington R. S., Robertson E. J. Anterior patterning in mouse. Trends Genet. 1998 Jul;14(7):277–284. doi: 10.1016/s0168-9525(98)01499-1. [DOI] [PubMed] [Google Scholar]
  14. Beddington R. S., Robertson E. J. Axis development and early asymmetry in mammals. Cell. 1999 Jan 22;96(2):195–209. doi: 10.1016/s0092-8674(00)80560-7. [DOI] [PubMed] [Google Scholar]
  15. Blitz I. L., Cho K. W. Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development. 1995 Apr;121(4):993–1004. doi: 10.1242/dev.121.4.993. [DOI] [PubMed] [Google Scholar]
  16. Blum M., Gaunt S. J., Cho K. W., Steinbeisser H., Blumberg B., Bittner D., De Robertis E. M. Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell. 1992 Jun 26;69(7):1097–1106. doi: 10.1016/0092-8674(92)90632-m. [DOI] [PubMed] [Google Scholar]
  17. Blumberg B., Bolado J., Jr, Moreno T. A., Kintner C., Evans R. M., Papalopulu N. An essential role for retinoid signaling in anteroposterior neural patterning. Development. 1997 Jan;124(2):373–379. doi: 10.1242/dev.124.2.373. [DOI] [PubMed] [Google Scholar]
  18. Boncinelli E., Simeone A., Acampora D., Mavilio F. HOX gene activation by retinoic acid. Trends Genet. 1991 Oct;7(10):329–334. doi: 10.1016/0168-9525(91)90423-n. [DOI] [PubMed] [Google Scholar]
  19. Bortier H., Vakaet L. C. Fate mapping the neural plate and the intraembryonic mesoblast in the upper layer of the chicken blastoderm with xenografting and time-lapse videography. Dev Suppl. 1992:93–97. [PubMed] [Google Scholar]
  20. Bouwmeester T., Kim S., Sasai Y., Lu B., De Robertis E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature. 1996 Aug 15;382(6592):595–601. doi: 10.1038/382595a0. [DOI] [PubMed] [Google Scholar]
  21. Bouwmeester T., Leyns L. Vertebrate head induction by anterior primitive endoderm. Bioessays. 1997 Oct;19(10):855–863. doi: 10.1002/bies.950191005. [DOI] [PubMed] [Google Scholar]
  22. Callebaut M., Van Nueten E., Van Nassauw L., Bortier H., Harrisson F. Only the endophyll-Rauber's sickle complex and not cells derived from the caudal marginal zone induce a primitive streak in the upper layer of avian blastoderms. Reprod Nutr Dev. 1998 Jul-Aug;38(4):449–463. doi: 10.1051/rnd:19980409. [DOI] [PubMed] [Google Scholar]
  23. Ciruna B. G., Schwartz L., Harpal K., Yamaguchi T. P., Rossant J. Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development. 1997 Jul;124(14):2829–2841. doi: 10.1242/dev.124.14.2829. [DOI] [PubMed] [Google Scholar]
  24. Conlon F. L., Barth K. S., Robertson E. J. A novel retrovirally induced embryonic lethal mutation in the mouse: assessment of the developmental fate of embryonic stem cells homozygous for the 413.d proviral integration. Development. 1991 Apr;111(4):969–981. doi: 10.1242/dev.111.4.969. [DOI] [PubMed] [Google Scholar]
  25. Conlon F. L., Lyons K. M., Takaesu N., Barth K. S., Kispert A., Herrmann B., Robertson E. J. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development. 1994 Jul;120(7):1919–1928. doi: 10.1242/dev.120.7.1919. [DOI] [PubMed] [Google Scholar]
  26. Conlon R. A. Retinoic acid and pattern formation in vertebrates. Trends Genet. 1995 Aug;11(8):314–319. doi: 10.1016/s0168-9525(00)89089-7. [DOI] [PubMed] [Google Scholar]
  27. Cox W. G., Hemmati-Brivanlou A. Caudalization of neural fate by tissue recombination and bFGF. Development. 1995 Dec;121(12):4349–4358. doi: 10.1242/dev.121.12.4349. [DOI] [PubMed] [Google Scholar]
  28. Crick F. Diffusion in embryogenesis. Nature. 1970 Jan 31;225(5231):420–422. doi: 10.1038/225420a0. [DOI] [PubMed] [Google Scholar]
  29. Dale K., Sattar N., Heemskerk J., Clarke J. D., Placzek M., Dodd J. Differential patterning of ventral midline cells by axial mesoderm is regulated by BMP7 and chordin. Development. 1999 Jan;126(2):397–408. doi: 10.1242/dev.126.2.397. [DOI] [PubMed] [Google Scholar]
  30. Deng C. X., Wynshaw-Boris A., Shen M. M., Daugherty C., Ornitz D. M., Leder P. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev. 1994 Dec 15;8(24):3045–3057. doi: 10.1101/gad.8.24.3045. [DOI] [PubMed] [Google Scholar]
  31. Dias M. S., Schoenwolf G. C. Formation of ectopic neurepithelium in chick blastoderms: age-related capacities for induction and self-differentiation following transplantation of quail Hensen's nodes. Anat Rec. 1990 Dec;228(4):437–448. doi: 10.1002/ar.1092280410. [DOI] [PubMed] [Google Scholar]
  32. Ding J., Yang L., Yan Y. T., Chen A., Desai N., Wynshaw-Boris A., Shen M. M. Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature. 1998 Oct 15;395(6703):702–707. doi: 10.1038/27215. [DOI] [PubMed] [Google Scholar]
  33. Dixon J. E., Kintner C. R. Cellular contacts required for neural induction in Xenopus embryos: evidence for two signals. Development. 1989 Aug;106(4):749–757. doi: 10.1242/dev.106.4.749. [DOI] [PubMed] [Google Scholar]
  34. Doniach T. Induction of anteroposterior neural pattern in Xenopus by planar signals. Dev Suppl. 1992:183–193. [PubMed] [Google Scholar]
  35. Doniach T., Phillips C. R., Gerhart J. C. Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis. Science. 1992 Jul 24;257(5069):542–545. doi: 10.1126/science.1636091. [DOI] [PubMed] [Google Scholar]
  36. Doniach T. Planar and vertical induction of anteroposterior pattern during the development of the amphibian central nervous system. J Neurobiol. 1993 Oct;24(10):1256–1275. doi: 10.1002/neu.480241003. [DOI] [PubMed] [Google Scholar]
  37. Dufort D., Schwartz L., Harpal K., Rossant J. The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development. 1998 Aug;125(16):3015–3025. doi: 10.1242/dev.125.16.3015. [DOI] [PubMed] [Google Scholar]
  38. Durston A. J., Timmermans J. P., Hage W. J., Hendriks H. F., de Vries N. J., Heideveld M., Nieuwkoop P. D. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature. 1989 Jul 13;340(6229):140–144. doi: 10.1038/340140a0. [DOI] [PubMed] [Google Scholar]
  39. EYAL-GILADI H. Dynamic aspects of neural induction in amphibia. Arch Biol (Liege) 1954;65(2):179–259. [PubMed] [Google Scholar]
  40. Erter C. E., Solnica-Krezel L., Wright C. V. Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev Biol. 1998 Dec 15;204(2):361–372. doi: 10.1006/dbio.1998.9097. [DOI] [PubMed] [Google Scholar]
  41. Feldman B., Dougan S. T., Schier A. F., Talbot W. S. Nodal-related signals establish mesendodermal fate and trunk neural identity in zebrafish. Curr Biol. 2000 May 4;10(9):531–534. doi: 10.1016/s0960-9822(00)00469-3. [DOI] [PubMed] [Google Scholar]
  42. Feldman B., Gates M. A., Egan E. S., Dougan S. T., Rennebeck G., Sirotkin H. I., Schier A. F., Talbot W. S. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature. 1998 Sep 10;395(6698):181–185. doi: 10.1038/26013. [DOI] [PubMed] [Google Scholar]
  43. Filosa S., Rivera-Pérez J. A., Gómez A. P., Gansmuller A., Sasaki H., Behringer R. R., Ang S. L. Goosecoid and HNF-3beta genetically interact to regulate neural tube patterning during mouse embryogenesis. Development. 1997 Jul;124(14):2843–2854. doi: 10.1242/dev.124.14.2843. [DOI] [PubMed] [Google Scholar]
  44. Foley A. C., Skromne I., Stern C. D. Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development. 2000 Sep;127(17):3839–3854. doi: 10.1242/dev.127.17.3839. [DOI] [PubMed] [Google Scholar]
  45. Foley A. C., Storey K. G., Stern C. D. The prechordal region lacks neural inducing ability, but can confer anterior character to more posterior neuroepithelium. Development. 1997 Aug;124(15):2983–2996. doi: 10.1242/dev.124.15.2983. [DOI] [PubMed] [Google Scholar]
  46. Gans C., Northcutt R. G. Neural crest and the origin of vertebrates: a new head. Science. 1983 Apr 15;220(4594):268–273. doi: 10.1126/science.220.4594.268. [DOI] [PubMed] [Google Scholar]
  47. Gerhart J., Danilchik M., Doniach T., Roberts S., Rowning B., Stewart R. Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development. 1989;107 (Suppl):37–51. doi: 10.1242/dev.107.Supplement.37. [DOI] [PubMed] [Google Scholar]
  48. Glinka A., Wu W., Delius H., Monaghan A. P., Blumenstock C., Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 1998 Jan 22;391(6665):357–362. doi: 10.1038/34848. [DOI] [PubMed] [Google Scholar]
  49. Hatada Y., Stern C. D. A fate map of the epiblast of the early chick embryo. Development. 1994 Oct;120(10):2879–2889. doi: 10.1242/dev.120.10.2879. [DOI] [PubMed] [Google Scholar]
  50. Hatta K., Takahashi Y. Secondary axis induction by heterospecific organizers in zebrafish. Dev Dyn. 1996 Feb;205(2):183–195. doi: 10.1002/(SICI)1097-0177(199602)205:2<183::AID-AJA9>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  51. Heisenberg C. P., Tada M., Rauch G. J., Saúde L., Concha M. L., Geisler R., Stemple D. L., Smith J. C., Wilson S. W. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature. 2000 May 4;405(6782):76–81. doi: 10.1038/35011068. [DOI] [PubMed] [Google Scholar]
  52. Hemmati-Brivanlou A., Kelly O. G., Melton D. A. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell. 1994 Apr 22;77(2):283–295. doi: 10.1016/0092-8674(94)90320-4. [DOI] [PubMed] [Google Scholar]
  53. Hemmati-Brivanlou A., Stewart R. M., Harland R. M. Region-specific neural induction of an engrailed protein by anterior notochord in Xenopus. Science. 1990 Nov 9;250(4982):800–802. doi: 10.1126/science.1978411. [DOI] [PubMed] [Google Scholar]
  54. Hill J., Clarke J. D., Vargesson N., Jowett T., Holder N. Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech Dev. 1995 Mar;50(1):3–16. doi: 10.1016/0925-4773(94)00321-d. [DOI] [PubMed] [Google Scholar]
  55. Hirano T., Nishida H. Developmental fates of larval tissues after metamorphosis in ascidian Halocynthia roretzi. I. Origin of mesodermal tissues of the juvenile. Dev Biol. 1997 Dec 15;192(2):199–210. doi: 10.1006/dbio.1997.8772. [DOI] [PubMed] [Google Scholar]
  56. Ho C. Y., Houart C., Wilson S. W., Stainier D. Y. A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene. Curr Biol. 1999 Oct 7;9(19):1131–1134. doi: 10.1016/s0960-9822(99)80485-0. [DOI] [PubMed] [Google Scholar]
  57. Holowacz T., Sokol S. FGF is required for posterior neural patterning but not for neural induction. Dev Biol. 1999 Jan 15;205(2):296–308. doi: 10.1006/dbio.1998.9108. [DOI] [PubMed] [Google Scholar]
  58. Hume C. R., Dodd J. Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization. Development. 1993 Dec;119(4):1147–1160. doi: 10.1242/dev.119.4.1147. [DOI] [PubMed] [Google Scholar]
  59. Iannaccone P. M., Zhou X., Khokha M., Boucher D., Kuehn M. R. Insertional mutation of a gene involved in growth regulation of the early mouse embryo. Dev Dyn. 1992 Jul;194(3):198–208. doi: 10.1002/aja.1001940305. [DOI] [PubMed] [Google Scholar]
  60. Izpisúa-Belmonte J. C., De Robertis E. M., Storey K. G., Stern C. D. The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell. 1993 Aug 27;74(4):645–659. doi: 10.1016/0092-8674(93)90512-o. [DOI] [PubMed] [Google Scholar]
  61. Keller R. E. Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev Biol. 1975 Feb;42(2):222–241. doi: 10.1016/0012-1606(75)90331-0. [DOI] [PubMed] [Google Scholar]
  62. Keller R. E. Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer. Dev Biol. 1976 Jul 1;51(1):118–137. doi: 10.1016/0012-1606(76)90127-5. [DOI] [PubMed] [Google Scholar]
  63. Keller R., Danilchik M. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development. 1988 May;103(1):193–209. doi: 10.1242/dev.103.1.193. [DOI] [PubMed] [Google Scholar]
  64. Keller R., Jansa S. Xenopus Gastrulation without a blastocoel roof. Dev Dyn. 1992 Nov;195(3):162–176. doi: 10.1002/aja.1001950303. [DOI] [PubMed] [Google Scholar]
  65. Keller R., Shih J., Sater A. K., Moreno C. Planar induction of convergence and extension of the neural plate by the organizer of Xenopus. Dev Dyn. 1992 Mar;193(3):218–234. doi: 10.1002/aja.1001930303. [DOI] [PubMed] [Google Scholar]
  66. Kengaku M., Okamoto H. bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development. 1995 Sep;121(9):3121–3130. doi: 10.1242/dev.121.9.3121. [DOI] [PubMed] [Google Scholar]
  67. Kimura C., Yoshinaga K., Tian E., Suzuki M., Aizawa S., Matsuo I. Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev Biol. 2000 Sep 15;225(2):304–321. doi: 10.1006/dbio.2000.9835. [DOI] [PubMed] [Google Scholar]
  68. Kintner C. R., Dodd J. Hensen's node induces neural tissue in Xenopus ectoderm. Implications for the action of the organizer in neural induction. Development. 1991 Dec;113(4):1495–1505. doi: 10.1242/dev.113.4.1495. [DOI] [PubMed] [Google Scholar]
  69. Kintner C. R., Melton D. A. Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction. Development. 1987 Mar;99(3):311–325. doi: 10.1242/dev.99.3.311. [DOI] [PubMed] [Google Scholar]
  70. Kispert A., Koschorz B., Herrmann B. G. The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J. 1995 Oct 2;14(19):4763–4772. doi: 10.1002/j.1460-2075.1995.tb00158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Kispert A., Ortner H., Cooke J., Herrmann B. G. The chick Brachyury gene: developmental expression pattern and response to axial induction by localized activin. Dev Biol. 1995 Apr;168(2):406–415. doi: 10.1006/dbio.1995.1090. [DOI] [PubMed] [Google Scholar]
  72. Klingensmith J., Ang S. L., Bachiller D., Rossant J. Neural induction and patterning in the mouse in the absence of the node and its derivatives. Dev Biol. 1999 Dec 15;216(2):535–549. doi: 10.1006/dbio.1999.9525. [DOI] [PubMed] [Google Scholar]
  73. Knoetgen H., Teichmann U., Kessel M. Head-organizing activities of endodermal tissues in vertebrates. Cell Mol Biol (Noisy-le-grand) 1999 Jul;45(5):481–492. [PubMed] [Google Scholar]
  74. Knoetgen H., Teichmann U., Wittler L., Viebahn C., Kessel M. Anterior neural induction by nodes from rabbits and mice. Dev Biol. 2000 Sep 15;225(2):370–380. doi: 10.1006/dbio.2000.9834. [DOI] [PubMed] [Google Scholar]
  75. Knoetgen H., Viebahn C., Kessel M. Head induction in the chick by primitive endoderm of mammalian, but not avian origin. Development. 1999 Feb;126(4):815–825. doi: 10.1242/dev.126.4.815. [DOI] [PubMed] [Google Scholar]
  76. Kolm P. J., Apekin V., Sive H. Xenopus hindbrain patterning requires retinoid signaling. Dev Biol. 1997 Dec 1;192(1):1–16. doi: 10.1006/dbio.1997.8754. [DOI] [PubMed] [Google Scholar]
  77. Kroll K. L., Amaya E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development. 1996 Oct;122(10):3173–3183. doi: 10.1242/dev.122.10.3173. [DOI] [PubMed] [Google Scholar]
  78. Lamb T. M., Knecht A. K., Smith W. C., Stachel S. E., Economides A. N., Stahl N., Yancopolous G. D., Harland R. M. Neural induction by the secreted polypeptide noggin. Science. 1993 Oct 29;262(5134):713–718. doi: 10.1126/science.8235591. [DOI] [PubMed] [Google Scholar]
  79. Lawson K. A., Meneses J. J., Pedersen R. A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development. 1991 Nov;113(3):891–911. doi: 10.1242/dev.113.3.891. [DOI] [PubMed] [Google Scholar]
  80. Lemaire L., Kessel M. Gastrulation and homeobox genes in chick embryos. Mech Dev. 1997 Sep;67(1):3–16. doi: 10.1016/s0925-4773(97)00102-0. [DOI] [PubMed] [Google Scholar]
  81. Li H., Tierney C., Wen L., Wu J. Y., Rao Y. A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development. 1997 Feb;124(3):603–615. doi: 10.1242/dev.124.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Marshall H., Nonchev S., Sham M. H., Muchamore I., Lumsden A., Krumlauf R. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature. 1992 Dec 24;360(6406):737–741. doi: 10.1038/360737a0. [DOI] [PubMed] [Google Scholar]
  83. Matsuo I., Kuratani S., Kimura C., Takeda N., Aizawa S. Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev. 1995 Nov 1;9(21):2646–2658. doi: 10.1101/gad.9.21.2646. [DOI] [PubMed] [Google Scholar]
  84. McGrew L. L., Hoppler S., Moon R. T. Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev. 1997 Dec;69(1-2):105–114. doi: 10.1016/s0925-4773(97)00160-3. [DOI] [PubMed] [Google Scholar]
  85. McMahon J. A., Takada S., Zimmerman L. B., Fan C. M., Harland R. M., McMahon A. P. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 1998 May 15;12(10):1438–1452. doi: 10.1101/gad.12.10.1438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Mitrani E., Eyal-Giladi H. Hypoblastic cells can form a disk inducing an embryonic axis in chick epiblast. Nature. 1981 Feb 26;289(5800):800–802. doi: 10.1038/289800a0. [DOI] [PubMed] [Google Scholar]
  87. Mitrani E., Shimoni Y., Eyal-Giladi H. Nature of the hypoblastic influence on the chick embryo epiblast. J Embryol Exp Morphol. 1983 Jun;75:21–30. [PubMed] [Google Scholar]
  88. Mitrani E., Ziv T., Thomsen G., Shimoni Y., Melton D. A., Bril A. Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell. 1990 Nov 2;63(3):495–501. doi: 10.1016/0092-8674(90)90446-l. [DOI] [PubMed] [Google Scholar]
  89. Montell D. J. The genetics of cell migration in Drosophila melanogaster and Caenorhabditis elegans development. Development. 1999 Jun;126(14):3035–3046. doi: 10.1242/dev.126.14.3035. [DOI] [PubMed] [Google Scholar]
  90. Morriss-Kay G., Tuckett F. Fluidity of the neural epithelium during forebrain formation in rat embryos. J Cell Sci Suppl. 1987;8:433–449. doi: 10.1242/jcs.1987.supplement_8.24. [DOI] [PubMed] [Google Scholar]
  91. Osada S. I., Wright C. V. Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development. 1999 Jun;126(14):3229–3240. doi: 10.1242/dev.126.14.3229. [DOI] [PubMed] [Google Scholar]
  92. Papalopulu N., Clarke J. D., Bradley L., Wilkinson D., Krumlauf R., Holder N. Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development. 1991 Dec;113(4):1145–1158. doi: 10.1242/dev.113.4.1145. [DOI] [PubMed] [Google Scholar]
  93. Perea-Gómez A., Shawlot W., Sasaki H., Behringer R. R., Ang S. HNF3beta and Lim1 interact in the visceral endoderm to regulate primitive streak formation and anterior-posterior polarity in the mouse embryo. Development. 1999 Oct;126(20):4499–4511. doi: 10.1242/dev.126.20.4499. [DOI] [PubMed] [Google Scholar]
  94. Piccolo S., Agius E., Leyns L., Bhattacharyya S., Grunz H., Bouwmeester T., De Robertis E. M. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature. 1999 Feb 25;397(6721):707–710. doi: 10.1038/17820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Pownall M. E., Tucker A. S., Slack J. M., Isaacs H. V. eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development. 1996 Dec;122(12):3881–3892. doi: 10.1242/dev.122.12.3881. [DOI] [PubMed] [Google Scholar]
  96. Rebagliati M. R., Toyama R., Fricke C., Haffter P., Dawid I. B. Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev Biol. 1998 Jul 15;199(2):261–272. doi: 10.1006/dbio.1998.8935. [DOI] [PubMed] [Google Scholar]
  97. Rebagliati M. R., Toyama R., Haffter P., Dawid I. B. cyclops encodes a nodal-related factor involved in midline signaling. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9932–9937. doi: 10.1073/pnas.95.17.9932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Rhinn M., Dierich A., Shawlot W., Behringer R. R., Le Meur M., Ang S. L. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development. 1998 Mar;125(5):845–856. doi: 10.1242/dev.125.5.845. [DOI] [PubMed] [Google Scholar]
  99. Rowan A. M., Stern C. D., Storey K. G. Axial mesendoderm refines rostrocaudal pattern in the chick nervous system. Development. 1999 Jul;126(13):2921–2934. doi: 10.1242/dev.126.13.2921. [DOI] [PubMed] [Google Scholar]
  100. Ruiz i Altaba A. Induction and axial patterning of the neural plate: planar and vertical signals. J Neurobiol. 1993 Oct;24(10):1276–1304. doi: 10.1002/neu.480241004. [DOI] [PubMed] [Google Scholar]
  101. Ruiz i Altaba A., Placzek M., Baldassare M., Dodd J., Jessell T. M. Early stages of notochord and floor plate development in the chick embryo defined by normal and induced expression of HNF-3 beta. Dev Biol. 1995 Aug;170(2):299–313. doi: 10.1006/dbio.1995.1216. [DOI] [PubMed] [Google Scholar]
  102. Sampath K., Rubinstein A. L., Cheng A. M., Liang J. O., Fekany K., Solnica-Krezel L., Korzh V., Halpern M. E., Wright C. V. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature. 1998 Sep 10;395(6698):185–189. doi: 10.1038/26020. [DOI] [PubMed] [Google Scholar]
  103. Sasai Y., Lu B., Steinbeisser H., De Robertis E. M. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature. 1995 Oct 26;377(6551):757–757. doi: 10.1038/377757a0. [DOI] [PubMed] [Google Scholar]
  104. Sater A. K., Steinhardt R. A., Keller R. Induction of neuronal differentiation by planar signals in Xenopus embryos. Dev Dyn. 1993 Aug;197(4):268–280. doi: 10.1002/aja.1001970405. [DOI] [PubMed] [Google Scholar]
  105. Schier A. F., Shen M. M. Nodal signalling in vertebrate development. Nature. 2000 Jan 27;403(6768):385–389. doi: 10.1038/35000126. [DOI] [PubMed] [Google Scholar]
  106. Schneider V. A., Mercola M. Spatially distinct head and heart inducers within the Xenopus organizer region. 1999 Jul 29-Aug 12Curr Biol. 9(15):800–809. doi: 10.1016/s0960-9822(99)80363-7. [DOI] [PubMed] [Google Scholar]
  107. Schoenwolf G. C., Sheard P. Fate mapping the avian epiblast with focal injections of a fluorescent-histochemical marker: ectodermal derivatives. J Exp Zool. 1990 Sep;255(3):323–339. doi: 10.1002/jez.1402550309. [DOI] [PubMed] [Google Scholar]
  108. Shawlot W., Behringer R. R. Requirement for Lim1 in head-organizer function. Nature. 1995 Mar 30;374(6521):425–430. doi: 10.1038/374425a0. [DOI] [PubMed] [Google Scholar]
  109. Shawlot W., Wakamiya M., Kwan K. M., Kania A., Jessell T. M., Behringer R. R. Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation in the mouse. Development. 1999 Nov;126(22):4925–4932. doi: 10.1242/dev.126.22.4925. [DOI] [PubMed] [Google Scholar]
  110. Simeone A., Avantaggiato V., Moroni M. C., Mavilio F., Arra C., Cotelli F., Nigro V., Acampora D. Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mech Dev. 1995 May;51(1):83–98. doi: 10.1016/0925-4773(95)96241-m. [DOI] [PubMed] [Google Scholar]
  111. Stein S., Kessel M. A homeobox gene involved in node, notochord and neural plate formation of chick embryos. Mech Dev. 1995 Jan;49(1-2):37–48. doi: 10.1016/0925-4773(94)00300-c. [DOI] [PubMed] [Google Scholar]
  112. Storey K. G., Crossley J. M., De Robertis E. M., Norris W. E., Stern C. D. Neural induction and regionalisation in the chick embryo. Development. 1992 Mar;114(3):729–741. doi: 10.1242/dev.114.3.729. [DOI] [PubMed] [Google Scholar]
  113. Streit A., Berliner A. J., Papanayotou C., Sirulnik A., Stern C. D. Initiation of neural induction by FGF signalling before gastrulation. Nature. 2000 Jul 6;406(6791):74–78. doi: 10.1038/35017617. [DOI] [PubMed] [Google Scholar]
  114. Streit A., Lee K. J., Woo I., Roberts C., Jessell T. M., Stern C. D. Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development. 1998 Feb;125(3):507–519. doi: 10.1242/dev.125.3.507. [DOI] [PubMed] [Google Scholar]
  115. Suda Y., Nakabayashi J., Matsuo I., Aizawa S. Functional equivalency between Otx2 and Otx1 in development of the rostral head. Development. 1999 Feb;126(4):743–757. doi: 10.1242/dev.126.4.743. [DOI] [PubMed] [Google Scholar]
  116. Sun X., Meyers E. N., Lewandoski M., Martin G. R. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 1999 Jul 15;13(14):1834–1846. doi: 10.1101/gad.13.14.1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Tada M., Smith J. C. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development. 2000 May;127(10):2227–2238. doi: 10.1242/dev.127.10.2227. [DOI] [PubMed] [Google Scholar]
  118. Taira M., Saint-Jeannet J. P., Dawid I. B. Role of the Xlim-1 and Xbra genes in anteroposterior patterning of neural tissue by the head and trunk organizer. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):895–900. doi: 10.1073/pnas.94.3.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Tam P. P., Steiner K. A. Anterior patterning by synergistic activity of the early gastrula organizer and the anterior germ layer tissues of the mouse embryo. Development. 1999 Nov;126(22):5171–5179. doi: 10.1242/dev.126.22.5171. [DOI] [PubMed] [Google Scholar]
  120. Tam P. P., Steiner K. A., Zhou S. X., Quinlan G. A. Lineage and functional analyses of the mouse organizer. Cold Spring Harb Symp Quant Biol. 1997;62:135–144. [PubMed] [Google Scholar]
  121. Thomas P. Q., Brown A., Beddington R. S. Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development. 1998 Jan;125(1):85–94. doi: 10.1242/dev.125.1.85. [DOI] [PubMed] [Google Scholar]
  122. Thomas P., Beddington R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol. 1996 Nov 1;6(11):1487–1496. doi: 10.1016/s0960-9822(96)00753-1. [DOI] [PubMed] [Google Scholar]
  123. Varlet I., Collignon J., Robertson E. J. nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development. 1997 Mar;124(5):1033–1044. doi: 10.1242/dev.124.5.1033. [DOI] [PubMed] [Google Scholar]
  124. Vesque C., Ellis S., Lee A., Szabo M., Thomas P., Beddington R., Placzek M. Development of chick axial mesoderm: specification of prechordal mesoderm by anterior endoderm-derived TGFbeta family signalling. Development. 2000 Jul;127(13):2795–2809. doi: 10.1242/dev.127.13.2795. [DOI] [PubMed] [Google Scholar]
  125. Wallingford J. B., Rowning B. A., Vogeli K. M., Rothbächer U., Fraser S. E., Harland R. M. Dishevelled controls cell polarity during Xenopus gastrulation. Nature. 2000 May 4;405(6782):81–85. doi: 10.1038/35011077. [DOI] [PubMed] [Google Scholar]
  126. Weinstein D. C., Ruiz i Altaba A., Chen W. S., Hoodless P., Prezioso V. R., Jessell T. M., Darnell J. E., Jr The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell. 1994 Aug 26;78(4):575–588. doi: 10.1016/0092-8674(94)90523-1. [DOI] [PubMed] [Google Scholar]
  127. Wilkinson D. G., Bhatt S., Herrmann B. G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature. 1990 Feb 15;343(6259):657–659. doi: 10.1038/343657a0. [DOI] [PubMed] [Google Scholar]
  128. Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol. 1969 Oct;25(1):1–47. doi: 10.1016/s0022-5193(69)80016-0. [DOI] [PubMed] [Google Scholar]
  129. Woo K., Fraser S. E. Order and coherence in the fate map of the zebrafish nervous system. Development. 1995 Aug;121(8):2595–2609. doi: 10.1242/dev.121.8.2595. [DOI] [PubMed] [Google Scholar]
  130. Woo K., Fraser S. E. Specification of the zebrafish nervous system by nonaxial signals. Science. 1997 Jul 11;277(5323):254–257. doi: 10.1126/science.277.5323.254. [DOI] [PubMed] [Google Scholar]
  131. Woo K., Shih J., Fraser S. E. Fate maps of the zebrafish embryo. Curr Opin Genet Dev. 1995 Aug;5(4):439–443. doi: 10.1016/0959-437x(95)90046-j. [DOI] [PubMed] [Google Scholar]
  132. Xu R. H., Kim J., Taira M., Sredni D., Kung H. Studies on the role of fibroblast growth factor signaling in neurogenesis using conjugated/aged animal caps and dorsal ectoderm-grafted embryos. J Neurosci. 1997 Sep 15;17(18):6892–6898. doi: 10.1523/JNEUROSCI.17-18-06892.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Yamada T. Caudalization by the amphibian organizer: brachyury, convergent extension and retinoic acid. Development. 1994 Nov;120(11):3051–3062. doi: 10.1242/dev.120.11.3051. [DOI] [PubMed] [Google Scholar]
  134. Zhu L., Belo J. A., De Robertis E. M., Stern C. D. Goosecoid regulates the neural inducing strength of the mouse node. Dev Biol. 1999 Dec 1;216(1):276–281. doi: 10.1006/dbio.1999.9508. [DOI] [PubMed] [Google Scholar]
  135. de Souza F. S., Niehrs C. Anterior endoderm and head induction in early vertebrate embryos. Cell Tissue Res. 2000 May;300(2):207–217. doi: 10.1007/s004410000204. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES