Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Jul-Aug;199(Pt 1-2):53–62. doi: 10.1046/j.1469-7580.2001.19910053.x

Otx genes in evolution: are they involved in instructing the vertebrate brain morphology?

DARIO ACAMPORA 1 ,2 , PIETRO PILO BOYL 1 , JUAN PEDRO MARTINEZ-BARBERA 1 , ALESSANDRO ANNINO 2 , MASSIMO SIGNORE 1 ,2 , ANTONIO SIMEONE 1 ,2 ,
PMCID: PMC1594960  PMID: 11523829

Abstract

Previous mouse models have indicated that Otx1 and Otx2 play an important role in brain and sense organ development and, together with the Drosophila orthodenticle (otd) gene, they share a high degree of reciprocal functional equivalence. Interestingly, mouse models replacing the same region of the Otx2 locus with Otx1, otd or lacZ genes have revealed the existence of a differential post-transcriptional control between the visceral endoderm (VE) and epiblast cells. Indeed Otx1, otd or lacZ mRNA were transcribed in both tissues but translated only in the VE. Embryos lacking OTX1 or OTD proteins in the epiblast and derived tissues, such as the neuroectoderm and axial mesendoderm (AME), fail to maintain the anterior identity and result in a headless phenotype. This finding leads us to hypothesise that, during evolution, the specification of the vertebrate-type brain may have required epiblast cells to translate Otx2 mRNA in order to establish maintenance properties. The establishment of this regulatory control might have been reflected into a remarkable reorganisation of the rostral CNS architecture and might have represented an important event in the evolution of the vertebrate head. Current data suggest that the Otx2 replaced region and in particular the 3′ untranslated region (UTR), may contain regulatory element(s) necessary to translate and/or stabilise Otx2 mRNA in epiblast and its derivatives.

Keywords: Otx , evolution, fore-midbrain, translational control, functional equivalence

Full Text

The Full Text of this article is available as a PDF (334.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acampora D., Avantaggiato V., Tuorto F., Barone P., Perera M., Choo D., Wu D., Corte G., Simeone A. Differential transcriptional control as the major molecular event in generating Otx1-/- and Otx2-/- divergent phenotypes. Development. 1999 Apr;126(7):1417–1426. doi: 10.1242/dev.126.7.1417. [DOI] [PubMed] [Google Scholar]
  2. Acampora D., Avantaggiato V., Tuorto F., Barone P., Reichert H., Finkelstein R., Simeone A. Murine Otx1 and Drosophila otd genes share conserved genetic functions required in invertebrate and vertebrate brain development. Development. 1998 May;125(9):1691–1702. doi: 10.1242/dev.125.9.1691. [DOI] [PubMed] [Google Scholar]
  3. Acampora D., Avantaggiato V., Tuorto F., Briata P., Corte G., Simeone A. Visceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation. Development. 1998 Dec;125(24):5091–5104. doi: 10.1242/dev.125.24.5091. [DOI] [PubMed] [Google Scholar]
  4. Acampora D., Avantaggiato V., Tuorto F., Simeone A. Genetic control of brain morphogenesis through Otx gene dosage requirement. Development. 1997 Sep;124(18):3639–3650. doi: 10.1242/dev.124.18.3639. [DOI] [PubMed] [Google Scholar]
  5. Acampora D., Gulisano M., Simeone A. Otx genes and the genetic control of brain morphogenesis. Mol Cell Neurosci. 1999 Jan;13(1):1–8. doi: 10.1006/mcne.1998.0730. [DOI] [PubMed] [Google Scholar]
  6. Acampora D., Mazan S., Avantaggiato V., Barone P., Tuorto F., Lallemand Y., Brûlet P., Simeone A. Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat Genet. 1996 Oct;14(2):218–222. doi: 10.1038/ng1096-218. [DOI] [PubMed] [Google Scholar]
  7. Acampora D., Mazan S., Lallemand Y., Avantaggiato V., Maury M., Simeone A., Brûlet P. Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Development. 1995 Oct;121(10):3279–3290. doi: 10.1242/dev.121.10.3279. [DOI] [PubMed] [Google Scholar]
  8. Acampora D., Simeone A. The TINS Lecture. Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis. Trends Neurosci. 1999 Mar;22(3):116–122. doi: 10.1016/s0166-2236(98)01387-3. [DOI] [PubMed] [Google Scholar]
  9. Ang S. L., Jin O., Rhinn M., Daigle N., Stevenson L., Rossant J. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development. 1996 Jan;122(1):243–252. doi: 10.1242/dev.122.1.243. [DOI] [PubMed] [Google Scholar]
  10. Bachiller D., Klingensmith J., Kemp C., Belo J. A., Anderson R. M., May S. R., McMahon J. A., McMahon A. P., Harland R. M., Rossant J. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature. 2000 Feb 10;403(6770):658–661. doi: 10.1038/35001072. [DOI] [PubMed] [Google Scholar]
  11. Broccoli V., Boncinelli E., Wurst W. The caudal limit of Otx2 expression positions the isthmic organizer. Nature. 1999 Sep 9;401(6749):164–168. doi: 10.1038/43670. [DOI] [PubMed] [Google Scholar]
  12. Camus A., Davidson B. P., Billiards S., Khoo P., Rivera-Pérez J. A., Wakamiya M., Behringer R. R., Tam P. P. The morphogenetic role of midline mesendoderm and ectoderm in the development of the forebrain and the midbrain of the mouse embryo. Development. 2000 May;127(9):1799–1813. doi: 10.1242/dev.127.9.1799. [DOI] [PubMed] [Google Scholar]
  13. Cohen S., Jürgens G. Drosophila headlines. Trends Genet. 1991 Aug;7(8):267–272. doi: 10.1016/0168-9525(91)90327-M. [DOI] [PubMed] [Google Scholar]
  14. Duboule D. Developmental genetics. A Hox by any other name. Nature. 2000 Feb 10;403(6770):607, 609-10. doi: 10.1038/35001179. [DOI] [PubMed] [Google Scholar]
  15. Finkelstein R., Boncinelli E. From fly head to mammalian forebrain: the story of otd and Otx. Trends Genet. 1994 Sep;10(9):310–315. doi: 10.1016/0168-9525(94)90033-7. [DOI] [PubMed] [Google Scholar]
  16. Finkelstein R., Perrimon N. The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature. 1990 Aug 2;346(6283):485–488. doi: 10.1038/346485a0. [DOI] [PubMed] [Google Scholar]
  17. Frantz G. D., Weimann J. M., Levin M. E., McConnell S. K. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci. 1994 Oct;14(10):5725–5740. doi: 10.1523/JNEUROSCI.14-10-05725.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Greer J. M., Puetz J., Thomas K. R., Capecchi M. R. Maintenance of functional equivalence during paralogous Hox gene evolution. Nature. 2000 Feb 10;403(6770):661–665. doi: 10.1038/35001077. [DOI] [PubMed] [Google Scholar]
  19. Hirth F., Reichert H. Conserved genetic programs in insect and mammalian brain development. Bioessays. 1999 Aug;21(8):677–684. doi: 10.1002/(SICI)1521-1878(199908)21:8<677::AID-BIES7>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  20. Hirth F., Therianos S., Loop T., Gehring W. J., Reichert H., Furukubo-Tokunaga K. Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron. 1995 Oct;15(4):769–778. doi: 10.1016/0896-6273(95)90169-8. [DOI] [PubMed] [Google Scholar]
  21. Holland P. W. The future of evolutionary developmental biology. Nature. 1999 Dec 2;402(6761 Suppl):C41–C44. doi: 10.1038/35011536. [DOI] [PubMed] [Google Scholar]
  22. Holland P., Ingham P., Krauss S. Development and evolution. Mice and flies head to head. Nature. 1992 Aug 20;358(6388):627–628. doi: 10.1038/358627a0. [DOI] [PubMed] [Google Scholar]
  23. Leuzinger S., Hirth F., Gerlich D., Acampora D., Simeone A., Gehring W. J., Finkelstein R., Furukubo-Tokunaga K., Reichert H. Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. Development. 1998 May;125(9):1703–1710. doi: 10.1242/dev.125.9.1703. [DOI] [PubMed] [Google Scholar]
  24. Lumsden A., Krumlauf R. Patterning the vertebrate neuraxis. Science. 1996 Nov 15;274(5290):1109–1115. doi: 10.1126/science.274.5290.1109. [DOI] [PubMed] [Google Scholar]
  25. Marin F., Puelles L. Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev Biol. 1994 May;163(1):19–37. doi: 10.1006/dbio.1994.1120. [DOI] [PubMed] [Google Scholar]
  26. Martinez S., Wassef M., Alvarado-Mallart R. M. Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron. 1991 Jun;6(6):971–981. doi: 10.1016/0896-6273(91)90237-t. [DOI] [PubMed] [Google Scholar]
  27. Matsuo I., Kuratani S., Kimura C., Takeda N., Aizawa S. Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev. 1995 Nov 1;9(21):2646–2658. doi: 10.1101/gad.9.21.2646. [DOI] [PubMed] [Google Scholar]
  28. Mercier P., Simeone A., Cotelli F., Boncinelli E. Expression pattern of two otx genes suggests a role in specifying anterior body structures in zebrafish. Int J Dev Biol. 1995 Aug;39(4):559–573. [PubMed] [Google Scholar]
  29. Millet S., Bloch-Gallego E., Simeone A., Alvarado-Mallart R. M. The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development. 1996 Dec;122(12):3785–3797. doi: 10.1242/dev.122.12.3785. [DOI] [PubMed] [Google Scholar]
  30. Millet S., Campbell K., Epstein D. J., Losos K., Harris E., Joyner A. L. A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature. 1999 Sep 9;401(6749):161–164. doi: 10.1038/43664. [DOI] [PubMed] [Google Scholar]
  31. Mori H., Miyazaki Y., Morita T., Nitta H., Mishina M. Different spatio-temporal expressions of three otx homeoprotein transcripts during zebrafish embryogenesis. Brain Res Mol Brain Res. 1994 Dec;27(2):221–231. doi: 10.1016/0169-328x(94)90004-3. [DOI] [PubMed] [Google Scholar]
  32. Morsli H., Tuorto F., Choo D., Postiglione M. P., Simeone A., Wu D. K. Otx1 and Otx2 activities are required for the normal development of the mouse inner ear. Development. 1999 Jun;126(11):2335–2343. doi: 10.1242/dev.126.11.2335. [DOI] [PubMed] [Google Scholar]
  33. Nagao T., Leuzinger S., Acampora D., Simeone A., Finkelstein R., Reichert H., Furukubo-Tokunaga K. Developmental rescue of Drosophila cephalic defects by the human Otx genes. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3737–3742. doi: 10.1073/pnas.95.7.3737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pannese M., Polo C., Andreazzoli M., Vignali R., Kablar B., Barsacchi G., Boncinelli E. The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development. 1995 Mar;121(3):707–720. doi: 10.1242/dev.121.3.707. [DOI] [PubMed] [Google Scholar]
  35. Reichert H., Simeone A. Conserved usage of gap and homeotic genes in patterning the CNS. Curr Opin Neurobiol. 1999 Oct;9(5):589–595. doi: 10.1016/S0959-4388(99)00002-1. [DOI] [PubMed] [Google Scholar]
  36. Rhinn M., Brand M. The midbrain--hindbrain boundary organizer. Curr Opin Neurobiol. 2001 Feb;11(1):34–42. doi: 10.1016/s0959-4388(00)00171-9. [DOI] [PubMed] [Google Scholar]
  37. Rhinn M., Dierich A., Shawlot W., Behringer R. R., Le Meur M., Ang S. L. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development. 1998 Mar;125(5):845–856. doi: 10.1242/dev.125.5.845. [DOI] [PubMed] [Google Scholar]
  38. Sharman A. C., Brand M. Evolution and homology of the nervous system: cross-phylum rescues of otd/Otx genes. Trends Genet. 1998 Jun;14(6):211–214. doi: 10.1016/s0168-9525(98)01488-7. [DOI] [PubMed] [Google Scholar]
  39. Shawlot W., Wakamiya M., Kwan K. M., Kania A., Jessell T. M., Behringer R. R. Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation in the mouse. Development. 1999 Nov;126(22):4925–4932. doi: 10.1242/dev.126.22.4925. [DOI] [PubMed] [Google Scholar]
  40. Simeone A., Acampora D., Gulisano M., Stornaiuolo A., Boncinelli E. Nested expression domains of four homeobox genes in developing rostral brain. Nature. 1992 Aug 20;358(6388):687–690. doi: 10.1038/358687a0. [DOI] [PubMed] [Google Scholar]
  41. Simeone A., Acampora D., Mallamaci A., Stornaiuolo A., D'Apice M. R., Nigro V., Boncinelli E. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 1993 Jul;12(7):2735–2747. doi: 10.1002/j.1460-2075.1993.tb05935.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Simeone A., Gulisano M., Acampora D., Stornaiuolo A., Rambaldi M., Boncinelli E. Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J. 1992 Jul;11(7):2541–2550. doi: 10.1002/j.1460-2075.1992.tb05319.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Simeone A. Positioning the isthmic organizer where Otx2 and Gbx2meet. Trends Genet. 2000 Jun;16(6):237–240. doi: 10.1016/s0168-9525(00)02000-x. [DOI] [PubMed] [Google Scholar]
  44. Suda Y., Matsuo I., Aizawa S. Cooperation between Otx1 and Otx2 genes in developmental patterning of rostral brain. Mech Dev. 1997 Dec;69(1-2):125–141. doi: 10.1016/s0925-4773(97)00161-5. [DOI] [PubMed] [Google Scholar]
  45. Suda Y., Nakabayashi J., Matsuo I., Aizawa S. Functional equivalency between Otx2 and Otx1 in development of the rostral head. Development. 1999 Feb;126(4):743–757. doi: 10.1242/dev.126.4.743. [DOI] [PubMed] [Google Scholar]
  46. Tam P. P., Behringer R. R. Mouse gastrulation: the formation of a mammalian body plan. Mech Dev. 1997 Nov;68(1-2):3–25. doi: 10.1016/s0925-4773(97)00123-8. [DOI] [PubMed] [Google Scholar]
  47. Ueki T., Kuratani S., Hirano S., Aizawa S. Otx cognates in a lamprey, Lampetra japonica. Dev Genes Evol. 1998 Jun;208(4):223–228. doi: 10.1007/s004270050176. [DOI] [PubMed] [Google Scholar]
  48. Wada S., Katsuyama Y., Sato Y., Itoh C., Saiga H. Hroth an orthodenticle-related homeobox gene of the ascidian, Halocynthia roretzi: its expression and putative roles in the axis formation during embryogenesis. Mech Dev. 1996 Nov;60(1):59–71. doi: 10.1016/s0925-4773(96)00600-4. [DOI] [PubMed] [Google Scholar]
  49. Wassarman K. M., Lewandoski M., Campbell K., Joyner A. L., Rubenstein J. L., Martinez S., Martin G. R. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development. 1997 Aug;124(15):2923–2934. doi: 10.1242/dev.124.15.2923. [DOI] [PubMed] [Google Scholar]
  50. Weimann J. M., Zhang Y. A., Levin M. E., Devine W. P., Brûlet P., McConnell S. K. Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron. 1999 Dec;24(4):819–831. doi: 10.1016/s0896-6273(00)81030-2. [DOI] [PubMed] [Google Scholar]
  51. Williams N. A., Holland P. W. Gene and domain duplication in the chordate Otx gene family: insights from amphioxus Otx. Mol Biol Evol. 1998 May;15(5):600–607. doi: 10.1093/oxfordjournals.molbev.a025961. [DOI] [PubMed] [Google Scholar]
  52. Wurst W., Bally-Cuif L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci. 2001 Feb;2(2):99–108. doi: 10.1038/35053516. [DOI] [PubMed] [Google Scholar]
  53. Younossi-Hartenstein A., Green P., Liaw G. J., Rudolph K., Lengyel J., Hartenstein V. Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. Dev Biol. 1997 Feb 15;182(2):270–283. doi: 10.1006/dbio.1996.8475. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES