Abstract
Regeneration poses a distinctive set of problems for evolutionary biologists, but there has been little substantive progress since these issues were clearly outlined in the monograph of T. H. Morgan (1901). The champions at regeneration among vertebrates are the urodele amphibians such as the newt, and we tend to regard urodele regeneration as an exceptional attribute. The ability to regenerate large sections of the body plan is widespread in metazoan phylogeny, although it is not universal. It is striking that in phylogenetic contexts where regeneration occurs, closely related species are observed which do not possess this ability. It is a challenge to reconcile such variation between species with a conventional selective interpretation of regeneration. The critical hypothesis from phylogenetic analysis is that regeneration is a basic, primordial attribute of metazoans rather than a mechanism which has evolved independently in a variety of contexts. In order to explain its absence in closely related species, it is postulated to be lost secondarily for reasons which are not understood. Our approach to this question is to compare a differentiated newt cell with its mammalian counterpart in respect of the plasticity of differentiation.
Keywords: Cancer, urodele, epimorphic, myotube, newt
Full Text
The Full Text of this article is available as a PDF (299.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agata K., Watanabe K. Molecular and cellular aspects of planarian regeneration. Semin Cell Dev Biol. 1999 Aug;10(4):377–383. doi: 10.1006/scdb.1999.0324. [DOI] [PubMed] [Google Scholar]
- Brockes J. P. Amphibian limb regeneration: rebuilding a complex structure. Science. 1997 Apr 4;276(5309):81–87. doi: 10.1126/science.276.5309.81. [DOI] [PubMed] [Google Scholar]
- Callaerts P., Munoz-Marmol A. M., Glardon S., Castillo E., Sun H., Li W. H., Gehring W. J., Salo E. Isolation and expression of a Pax-6 gene in the regenerating and intact Planarian Dugesia(G)tigrina. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):558–563. doi: 10.1073/pnas.96.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Rio-Tsonis K., Washabaugh C. H., Tsonis P. A. Expression of pax-6 during urodele eye development and lens regeneration. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5092–5096. doi: 10.1073/pnas.92.11.5092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eguchi G., Abe S. I., Watanabe K. Differentiation of lens-like structures from newt iris epithelial cells in vitro. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5052–5056. doi: 10.1073/pnas.71.12.5052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eguchi G., Watanabe K. Elicitation of lens formation from the "ventral iris" epithelium of the newt by a carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine. J Embryol Exp Morphol. 1973 Aug;30(1):63–71. [PubMed] [Google Scholar]
- Ferretti P., Brockes J. P. Culture of newt cells from different tissues and their expression of a regeneration-associated antigen. J Exp Zool. 1988 Jul;247(1):77–91. doi: 10.1002/jez.1402470111. [DOI] [PubMed] [Google Scholar]
- Galliot B. Signaling molecules in regenerating hydra. Bioessays. 1997 Jan;19(1):37–46. doi: 10.1002/bies.950190108. [DOI] [PubMed] [Google Scholar]
- Gardiner D. M., Bryant S. V. Molecular mechanisms in the control of limb regeneration: the role of homeobox genes. Int J Dev Biol. 1996 Aug;40(4):797–805. [PubMed] [Google Scholar]
- Ghosh S., Thorogood P., Ferretti P. Regenerative capability of upper and lower jaws in the newt. Int J Dev Biol. 1994 Sep;38(3):479–490. [PubMed] [Google Scholar]
- Goss R. J. The evolution of regeneration: adaptive or inherent? J Theor Biol. 1992 Nov 21;159(2):241–260. doi: 10.1016/s0022-5193(05)80704-0. [DOI] [PubMed] [Google Scholar]
- Iyer V. R., Eisen M. B., Ross D. T., Schuler G., Moore T., Lee J. C., Trent J. M., Staudt L. M., Hudson J., Jr, Boguski M. S. The transcriptional program in the response of human fibroblasts to serum. Science. 1999 Jan 1;283(5398):83–87. doi: 10.1126/science.283.5398.83. [DOI] [PubMed] [Google Scholar]
- Kablar B., Tajbakhsh S., Rudnicki M. A. Transdifferentiation of esophageal smooth to skeletal muscle is myogenic bHLH factor-dependent. Development. 2000 Apr;127(8):1627–1639. doi: 10.1242/dev.127.8.1627. [DOI] [PubMed] [Google Scholar]
- Kmita-Cunisse M., Loosli F., Bièrne J., Gehring W. J. Homeobox genes in the ribbonworm Lineus sanguineus: evolutionary implications. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3030–3035. doi: 10.1073/pnas.95.6.3030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kosaka M., Kodama R., Eguchi G. In vitro culture system for iris-pigmented epithelial cells for molecular analysis of transdifferentiation. Exp Cell Res. 1998 Dec 15;245(2):245–251. doi: 10.1006/excr.1998.4211. [DOI] [PubMed] [Google Scholar]
- Kumar A., Velloso C. P., Imokawa Y., Brockes J. P. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol. 2000 Feb 15;218(2):125–136. doi: 10.1006/dbio.1999.9569. [DOI] [PubMed] [Google Scholar]
- Lin Y. C., Grigoriev N. G., Spencer A. N. Wound healing in jellyfish striated muscle involves rapid switching between two modes of cell motility and a change in the source of regulatory calcium. Dev Biol. 2000 Sep 1;225(1):87–100. doi: 10.1006/dbio.2000.9807. [DOI] [PubMed] [Google Scholar]
- Lo D. C., Allen F., Brockes J. P. Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7230–7234. doi: 10.1073/pnas.90.15.7230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizuno N., Mochii M., Yamamoto T. S., Takahashi T. C., Eguchi G., Okada T. S. Pax-6 and Prox 1 expression during lens regeneration from Cynops iris and Xenopus cornea: evidence for a genetic program common to embryonic lens development. Differentiation. 1999 Nov;65(3):141–149. doi: 10.1046/j.1432-0436.1999.6530141.x. [DOI] [PubMed] [Google Scholar]
- Newmark P. A., Sánchez Alvarado A. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol. 2000 Apr 15;220(2):142–153. doi: 10.1006/dbio.2000.9645. [DOI] [PubMed] [Google Scholar]
- Oberpriller J. O., Oberpriller J. C. Response of the adult newt ventricle to injury. J Exp Zool. 1974 Feb;187(2):249–253. doi: 10.1002/jez.1401870208. [DOI] [PubMed] [Google Scholar]
- Patapoutian A., Wold B. J., Wagner R. A. Evidence for developmentally programmed transdifferentiation in mouse esophageal muscle. Science. 1995 Dec 15;270(5243):1818–1821. doi: 10.1126/science.270.5243.1818. [DOI] [PubMed] [Google Scholar]
- Repesh L. A., Oberpriller J. C. Scanning electron microscopy of epidermal cell migration in wound healing during limb regeneration in the adult newt, Notophthalmus viridescens. Am J Anat. 1978 Apr;151(4):539–555. doi: 10.1002/aja.1001510408. [DOI] [PubMed] [Google Scholar]
- Rosania G. R., Chang Y. T., Perez O., Sutherlin D., Dong H., Lockhart D. J., Schultz P. G. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol. 2000 Mar;18(3):304–308. doi: 10.1038/73753. [DOI] [PubMed] [Google Scholar]
- Ruas M., Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta. 1998 Oct 14;1378(2):F115–F177. doi: 10.1016/s0304-419x(98)00017-1. [DOI] [PubMed] [Google Scholar]
- Schmid V., Baader C., Bucciarelli A., Reber-Müller S. Mechanochemical interactions between striated muscle cells of jellyfish and grafted extracellular matrix can induce and inhibit DNA replication and transdifferentiation in vitro. Dev Biol. 1993 Feb;155(2):483–496. doi: 10.1006/dbio.1993.1046. [DOI] [PubMed] [Google Scholar]
- Schneider J. W., Gu W., Zhu L., Mahdavi V., Nadal-Ginard B. Reversal of terminal differentiation mediated by p107 in Rb-/- muscle cells. Science. 1994 Jun 3;264(5164):1467–1471. doi: 10.1126/science.8197461. [DOI] [PubMed] [Google Scholar]
- Seale P., Rudnicki M. A. A new look at the origin, function, and "stem-cell" status of muscle satellite cells. Dev Biol. 2000 Feb 15;218(2):115–124. doi: 10.1006/dbio.1999.9565. [DOI] [PubMed] [Google Scholar]
- Shibata N., Umesono Y., Orii H., Sakurai T., Watanabe K., Agata K. Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol. 1999 Feb 1;206(1):73–87. doi: 10.1006/dbio.1998.9130. [DOI] [PubMed] [Google Scholar]
- Solari F., Domenget C., Gire V., Woods C., Lazarides E., Rousset B., Jurdic P. Multinucleated cells can continuously generate mononucleated cells in the absence of mitosis: a study of cells of the avian osteoclast lineage. J Cell Sci. 1995 Oct;108(Pt 10):3233–3241. doi: 10.1242/jcs.108.10.3233. [DOI] [PubMed] [Google Scholar]
- Sánchez Alvarado A. Regeneration in the metazoans: why does it happen? Bioessays. 2000 Jun;22(6):578–590. doi: 10.1002/(SICI)1521-1878(200006)22:6<578::AID-BIES11>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Tanaka E. M., Drechsel D. N., Brockes J. P. Thrombin regulates S-phase re-entry by cultured newt myotubes. 1999 Jul 29-Aug 12Curr Biol. 9(15):792–799. doi: 10.1016/s0960-9822(99)80362-5. [DOI] [PubMed] [Google Scholar]
- Tanaka E. M., Gann A. A., Gates P. B., Brockes J. P. Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol. 1997 Jan 13;136(1):155–165. doi: 10.1083/jcb.136.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsonis P. A. Regeneration in vertebrates. Dev Biol. 2000 May 15;221(2):273–284. doi: 10.1006/dbio.2000.9667. [DOI] [PubMed] [Google Scholar]
- Velloso C. P., Kumar A., Tanaka E. M., Brockes J. P. Generation of mononucleate cells from post-mitotic myotubes proceeds in the absence of cell cycle progression. Differentiation. 2000 Dec;66(4-5):239–246. doi: 10.1046/j.1432-0436.2000.660410.x. [DOI] [PubMed] [Google Scholar]