Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Jul-Aug;199(Pt 1-2):177–180. doi: 10.1046/j.1469-7580.2001.19910177.x

The role of the notochord in vertebral column formation

ANGELEEN FLEMING 1,, ROGER J KEYNES 1, DAVID TANNAHILL 1
PMCID: PMC1594967  PMID: 11523820

Abstract

The backbone or vertebral column is the defining feature of vertebrates and is clearly metameric. Given that vertebrae arise from segmented paraxial mesoderm in the embryo, this metamerism is not surprising. Fate mapping studies in a variety of species have shown that ventromedial sclerotome cells of the differentiated somite contribute to the developing vertebrae and ribs. Nevertheless, extensive studies in amniote embryos have produced conflicting data on exactly how embryonic segments relate to those of the adult. To date, much attention has focused on the derivatives of the somites, while relatively little is known about the contribution of other tissues to the formation of the vertebral column. In particular, while it is clear that signals from the notochord induce and maintain proliferation of the sclerotome, and later promote chondrogenesis, the role of the notochord in vertebral segmentation has been largely overlooked. Here, we review the established role of the notochord in vertebral development, and suggest an additional role for the notochord in the segmental patterning of the vertebral column.

Keywords: Segmentation, notochord, sclerotome, vertebrae, somite

Full Text

The Full Text of this article is available as a PDF (103.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brand-Saberi B., Christ B. Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol. 2000;48:1–42. doi: 10.1016/s0070-2153(08)60753-x. [DOI] [PubMed] [Google Scholar]
  2. Burgess R., Rawls A., Brown D., Bradley A., Olson E. N. Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature. 1996 Dec 12;384(6609):570–573. doi: 10.1038/384570a0. [DOI] [PubMed] [Google Scholar]
  3. Chiang C., Litingtung Y., Lee E., Young K. E., Corden J. L., Westphal H., Beachy P. A. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996 Oct 3;383(6599):407–413. doi: 10.1038/383407a0. [DOI] [PubMed] [Google Scholar]
  4. Dalgleish A. E. A study of the development of thoracic vertebrae in the mouse assisted by autoradiography. Acta Anat (Basel) 1985;122(2):91–98. doi: 10.1159/000145988. [DOI] [PubMed] [Google Scholar]
  5. Devoto S. H., Melançon E., Eisen J. S., Westerfield M. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development. 1996 Nov;122(11):3371–3380. doi: 10.1242/dev.122.11.3371. [DOI] [PubMed] [Google Scholar]
  6. Dick A., Meier A., Hammerschmidt M. Smad1 and Smad5 have distinct roles during dorsoventral patterning of the zebrafish embryo. Dev Dyn. 1999 Nov;216(3):285–298. doi: 10.1002/(SICI)1097-0177(199911)216:3<285::AID-DVDY7>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  7. Dockter J. L. Sclerotome induction and differentiation. Curr Top Dev Biol. 2000;48:77–127. doi: 10.1016/s0070-2153(08)60755-3. [DOI] [PubMed] [Google Scholar]
  8. Ekanayake S., Hall B. K. The development of acellularity of the vertebral bone of the Japanese medaka, Oryzias latipes (Teleostei; Cyprinidontidae). J Morphol. 1987 Sep;193(3):253–261. doi: 10.1002/jmor.1051930304. [DOI] [PubMed] [Google Scholar]
  9. Ekanayake S., Hall B. K. Ultrastructure of the osteogenesis of acellular vertebral bone in the Japanese medaka, Oryzias latipes (Teleostei, Cyprinidontidae). Am J Anat. 1988 Jul;182(3):241–249. doi: 10.1002/aja.1001820305. [DOI] [PubMed] [Google Scholar]
  10. Fan C. M., Tessier-Lavigne M. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell. 1994 Dec 30;79(7):1175–1186. doi: 10.1016/0092-8674(94)90009-4. [DOI] [PubMed] [Google Scholar]
  11. Furumoto T. A., Miura N., Akasaka T., Mizutani-Koseki Y., Sudo H., Fukuda K., Maekawa M., Yuasa S., Fu Y., Moriya H. Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development. Dev Biol. 1999 Jun 1;210(1):15–29. doi: 10.1006/dbio.1999.9261. [DOI] [PubMed] [Google Scholar]
  12. Fürthauer M., Thisse B., Thisse C. Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo. Dev Biol. 1999 Oct 1;214(1):181–196. doi: 10.1006/dbio.1999.9401. [DOI] [PubMed] [Google Scholar]
  13. Hammerschmidt M., McMahon A. P. The effect of pertussis toxin on zebrafish development: a possible role for inhibitory G-proteins in hedgehog signaling. Dev Biol. 1998 Feb 15;194(2):166–171. doi: 10.1006/dbio.1997.8796. [DOI] [PubMed] [Google Scholar]
  14. Holley S. A., Nüsslein-Volhard C. Somitogenesis in zebrafish. Curr Top Dev Biol. 2000;47:247–277. doi: 10.1016/s0070-2153(08)60727-9. [DOI] [PubMed] [Google Scholar]
  15. KITCHIN I. C. The effects of notochordectomy in Amblystoma mexicanum. J Exp Zool. 1949 Dec;112(3):393–415. doi: 10.1002/jez.1401120303. [DOI] [PubMed] [Google Scholar]
  16. McMahon J. A., Takada S., Zimmerman L. B., Fan C. M., Harland R. M., McMahon A. P. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 1998 May 15;12(10):1438–1452. doi: 10.1101/gad.12.10.1438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Monsoro-Burq A. H., Bontoux M., Teillet M. A., Le Douarin N. M. Heterogeneity in the development of the vertebra. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10435–10439. doi: 10.1073/pnas.91.22.10435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Monsoro-Burq A. H., Duprez D., Watanabe Y., Bontoux M., Vincent C., Brickell P., Le Douarin N. The role of bone morphogenetic proteins in vertebral development. Development. 1996 Nov;122(11):3607–3616. doi: 10.1242/dev.122.11.3607. [DOI] [PubMed] [Google Scholar]
  19. Monsoro-Burq A. H., Le Douarin N. Duality of molecular signaling involved in vertebral chondrogenesis. Curr Top Dev Biol. 2000;48:43–75. doi: 10.1016/s0070-2153(08)60754-1. [DOI] [PubMed] [Google Scholar]
  20. Morin-Kensicki E. M., Eisen J. S. Sclerotome development and peripheral nervous system segmentation in embryonic zebrafish. Development. 1997 Jan;124(1):159–167. doi: 10.1242/dev.124.1.159. [DOI] [PubMed] [Google Scholar]
  21. Nornes S., Mikkola I., Krauss S., Delghandi M., Perander M., Johansen T. Zebrafish Pax9 encodes two proteins with distinct C-terminal transactivating domains of different potency negatively regulated by adjacent N-terminal sequences. J Biol Chem. 1996 Oct 25;271(43):26914–26923. doi: 10.1074/jbc.271.43.26914. [DOI] [PubMed] [Google Scholar]
  22. Peters H., Doll U., Niessing J. Differential expression of the chicken Pax-1 and Pax-9 gene: in situ hybridization and immunohistochemical analysis. Dev Dyn. 1995 May;203(1):1–16. doi: 10.1002/aja.1002030102. [DOI] [PubMed] [Google Scholar]
  23. Pourquié O., Coltey M., Teillet M. A., Ordahl C., Le Douarin N. M. Control of dorsoventral patterning of somitic derivatives by notochord and floor plate. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5242–5246. doi: 10.1073/pnas.90.11.5242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. STRUDEL G. L'action morphogène du tube nerveux et de la corde sur la différenciation des vertèbres et des muscles vertébraux chez l'embryon de poulet. Arch Anat Microsc Morphol Exp. 1955;44(3):209–235. [PubMed] [Google Scholar]
  25. Stickney H. L., Barresi M. J., Devoto S. H. Somite development in zebrafish. Dev Dyn. 2000 Nov;219(3):287–303. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1065>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  26. Tonegawa A., Funayama N., Ueno N., Takahashi Y. Mesodermal subdivision along the mediolateral axis in chicken controlled by different concentrations of BMP-4. Development. 1997 May;124(10):1975–1984. doi: 10.1242/dev.124.10.1975. [DOI] [PubMed] [Google Scholar]
  27. Verbout A. J. A critical review of the 'neugliederung' concept in relation to the development of the vertebral column. Acta Biotheor. 1976;25(4):219–258. doi: 10.1007/BF00046818. [DOI] [PubMed] [Google Scholar]
  28. Verbout A. J. The development of the vertebral column. Adv Anat Embryol Cell Biol. 1985;90:1–122. doi: 10.1007/978-3-642-69983-2. [DOI] [PubMed] [Google Scholar]
  29. WATTERSON R. L., FOWLER I., FOWLER B. J. The role of the neural tube and notochord in development of the axial skeleton of the chick. Am J Anat. 1954 Nov;95(3):337–399. doi: 10.1002/aja.1000950302. [DOI] [PubMed] [Google Scholar]
  30. Watanabe Y., Duprez D., Monsoro-Burq A. H., Vincent C., Le Douarin N. M. Two domains in vertebral development: antagonistic regulation by SHH and BMP4 proteins. Development. 1998 Jul;125(14):2631–2639. doi: 10.1242/dev.125.14.2631. [DOI] [PubMed] [Google Scholar]
  31. van Eeden F. J., Granato M., Schach U., Brand M., Furutani-Seiki M., Haffter P., Hammerschmidt M., Heisenberg C. P., Jiang Y. J., Kane D. A. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development. 1996 Dec;123:153–164. doi: 10.1242/dev.123.1.153. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES