Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Jul-Aug;199(Pt 1-2):181–187. doi: 10.1046/j.1469-7580.2001.19910181.x

The role of Bapx1 (Nkx3.2) in the development and evolution of the axial skeleton

LAURA LETTICE 1, JACOB HECKSHER-SØRENSEN 1, ROBERT HILL 1,
PMCID: PMC1594973  PMID: 11523821

Abstract

The bagpipe-related homeobox-containing genes are members of the NK family. bagpipe (bap) was first identified in Drosophila and there are three different bagpipe-related genes in vertebrates. Only two of these are found in mammals, the Nkx3.1 and the Bapx1 (Nkx3.2) gene. The targeted mutation in the mouse Bapx1 gene shows a vertebral phenotype in which the ventromedial elements are lacking; these are the centra and the intervertebral discs. In addition, a region of gastric mesenchyme is abnormal. This mesenchyme surrounds the posterior region of the presumptive stomach and duodenum, and in the mutant fails to support normal development of the spleen. In Drosophila, bagpipe has a role in gut mesoderm and the mutant embryos have no midgut musculature. Thus bap related genes in mouse and Drosophila have roles in patterning gut mesoderm; however, neither of the mammalian genes has a discernible role in the gut musculature. In contrast, both mammalian genes have roles in developmental processes that have appeared recently in evolution. The Bapx1 gene found in fish, amphibians, birds and mammals appears to have derived vertebrate specific functions sometime after the split between the jawless fish and gnathostomes.

Keywords: Bapx1 , axial skeleton, Nkx3.1 , development, evolution

Full Text

The Full Text of this article is available as a PDF (457.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akazawa H., Komuro I., Sugitani Y., Yazaki Y., Nagai R., Noda T. Targeted disruption of the homeobox transcription factor Bapx1 results in lethal skeletal dysplasia with asplenia and gastroduodenal malformation. Genes Cells. 2000 Jun;5(6):499–513. doi: 10.1046/j.1365-2443.2000.00339.x. [DOI] [PubMed] [Google Scholar]
  2. Azpiazu N., Frasch M. tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev. 1993 Jul;7(7B):1325–1340. doi: 10.1101/gad.7.7b.1325. [DOI] [PubMed] [Google Scholar]
  3. Bhatia-Gaur R., Donjacour A. A., Sciavolino P. J., Kim M., Desai N., Young P., Norton C. R., Gridley T., Cardiff R. D., Cunha G. R. Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 1999 Apr 15;13(8):966–977. doi: 10.1101/gad.13.8.966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brand-Saberi B., Christ B. Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol. 2000;48:1–42. doi: 10.1016/s0070-2153(08)60753-x. [DOI] [PubMed] [Google Scholar]
  5. Fan C. M., Tessier-Lavigne M. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell. 1994 Dec 30;79(7):1175–1186. doi: 10.1016/0092-8674(94)90009-4. [DOI] [PubMed] [Google Scholar]
  6. Harvey R. P. NK-2 homeobox genes and heart development. Dev Biol. 1996 Sep 15;178(2):203–216. doi: 10.1006/dbio.1996.0212. [DOI] [PubMed] [Google Scholar]
  7. Holland P. W., Garcia-Fernàndez J., Williams N. A., Sidow A. Gene duplications and the origins of vertebrate development. Dev Suppl. 1994:125–133. [PubMed] [Google Scholar]
  8. Jagla K., Bellard M., Frasch M. A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. Bioessays. 2001 Feb;23(2):125–133. doi: 10.1002/1521-1878(200102)23:2<125::AID-BIES1019>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  9. Kim Y., Nirenberg M. Drosophila NK-homeobox genes. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7716–7720. doi: 10.1073/pnas.86.20.7716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leitges M., Neidhardt L., Haenig B., Herrmann B. G., Kispert A. The paired homeobox gene Uncx4.1 specifies pedicles, transverse processes and proximal ribs of the vertebral column. Development. 2000 Jun;127(11):2259–2267. doi: 10.1242/dev.127.11.2259. [DOI] [PubMed] [Google Scholar]
  11. Lettice L. A., Purdie L. A., Carlson G. J., Kilanowski F., Dorin J., Hill R. E. The mouse bagpipe gene controls development of axial skeleton, skull, and spleen. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9695–9700. doi: 10.1073/pnas.96.17.9695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mansouri A., Voss A. K., Thomas T., Yokota Y., Gruss P. Uncx4.1 is required for the formation of the pedicles and proximal ribs and acts upstream of Pax9. Development. 2000 Jun;127(11):2251–2258. doi: 10.1242/dev.127.11.2251. [DOI] [PubMed] [Google Scholar]
  13. Mo R., Freer A. M., Zinyk D. L., Crackower M. A., Michaud J., Heng H. H., Chik K. W., Shi X. M., Tsui L. C., Cheng S. H. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development. 1997 Jan;124(1):113–123. doi: 10.1242/dev.124.1.113. [DOI] [PubMed] [Google Scholar]
  14. Newman C. S., Grow M. W., Cleaver O., Chia F., Krieg P. Xbap, a vertebrate gene related to bagpipe, is expressed in developing craniofacial structures and in anterior gut muscle. Dev Biol. 1997 Jan 15;181(2):223–233. doi: 10.1006/dbio.1996.8416. [DOI] [PubMed] [Google Scholar]
  15. Newman C. S., Krieg P. A. The Xenopus bagpipe-related homeobox gene zampogna is expressed in the pharyngeal endoderm and the visceral musculature of the midgut. Dev Genes Evol. 1999 Feb;209(2):132–134. doi: 10.1007/s004270050236. [DOI] [PubMed] [Google Scholar]
  16. Nicolas S., Caubit X., Massacrier A., Cau P., Le Parco Y. Two Nkx-3-related genes are expressed in the adult and regenerating central nervous system of the urodele Pleurodeles waltl. Dev Genet. 1999;24(3-4):319–328. doi: 10.1002/(SICI)1520-6408(1999)24:3/4<319::AID-DVG15>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  17. Nornes S., Mikkola I., Krauss S., Delghandi M., Perander M., Johansen T. Zebrafish Pax9 encodes two proteins with distinct C-terminal transactivating domains of different potency negatively regulated by adjacent N-terminal sequences. J Biol Chem. 1996 Oct 25;271(43):26914–26923. doi: 10.1074/jbc.271.43.26914. [DOI] [PubMed] [Google Scholar]
  18. Ogasawara M., Shigetani Y., Hirano S., Satoh N., Kuratani S. Pax1/Pax9-Related genes in an agnathan vertebrate, Lampetra japonica: expression pattern of LjPax9 implies sequential evolutionary events toward the gnathostome body plan. Dev Biol. 2000 Jul 15;223(2):399–410. doi: 10.1006/dbio.2000.9756. [DOI] [PubMed] [Google Scholar]
  19. Peters H., Wilm B., Sakai N., Imai K., Maas R., Balling R. Pax1 and Pax9 synergistically regulate vertebral column development. Development. 1999 Dec;126(23):5399–5408. doi: 10.1242/dev.126.23.5399. [DOI] [PubMed] [Google Scholar]
  20. Pollard S. L., Holland P. W. Evidence for 14 homeobox gene clusters in human genome ancestry. Curr Biol. 2000 Sep 7;10(17):1059–1062. doi: 10.1016/s0960-9822(00)00676-x. [DOI] [PubMed] [Google Scholar]
  21. Schneider A., Brand T., Zweigerdt R., Arnold H. Targeted disruption of the Nkx3.1 gene in mice results in morphogenetic defects of minor salivary glands: parallels to glandular duct morphogenesis in prostate. Mech Dev. 2000 Jul;95(1-2):163–174. doi: 10.1016/s0925-4773(00)00355-5. [DOI] [PubMed] [Google Scholar]
  22. Schneider A., Mijalski T., Schlange T., Dai W., Overbeek P., Arnold H. H., Brand T. The homeobox gene NKX3.2 is a target of left-right signalling and is expressed on opposite sides in chick and mouse embryos. Curr Biol. 1999 Aug 26;9(16):911–914. doi: 10.1016/s0960-9822(99)80397-2. [DOI] [PubMed] [Google Scholar]
  23. Tanaka M., Komuro I., Inagaki H., Jenkins N. A., Copeland N. G., Izumo S. Nkx3.1, a murine homolog of Ddrosophila bagpipe, regulates epithelial ductal branching and proliferation of the prostate and palatine glands. Dev Dyn. 2000 Oct;219(2):248–260. doi: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1054>3.3.co;2-5. [DOI] [PubMed] [Google Scholar]
  24. Tribioli C., Frasch M., Lufkin T. Bapx1: an evolutionary conserved homologue of the Drosophila bagpipe homeobox gene is expressed in splanchnic mesoderm and the embryonic skeleton. Mech Dev. 1997 Jul;65(1-2):145–162. doi: 10.1016/s0925-4773(97)00067-1. [DOI] [PubMed] [Google Scholar]
  25. Tribioli C., Lufkin T. Molecular cloning, chromosomal mapping and developmental expression of BAPX1, a novel human homeobox-containing gene homologous to Drosophila bagpipe. Gene. 1997 Dec 12;203(2):225–233. doi: 10.1016/s0378-1119(97)00520-9. [DOI] [PubMed] [Google Scholar]
  26. Tribioli C., Lufkin T. The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development. 1999 Dec;126(24):5699–5711. doi: 10.1242/dev.126.24.5699. [DOI] [PubMed] [Google Scholar]
  27. Wallin J., Wilting J., Koseki H., Fritsch R., Christ B., Balling R. The role of Pax-1 in axial skeleton development. Development. 1994 May;120(5):1109–1121. doi: 10.1242/dev.120.5.1109. [DOI] [PubMed] [Google Scholar]
  28. Wilm B., Dahl E., Peters H., Balling R., Imai K. Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8692–8697. doi: 10.1073/pnas.95.15.8692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Winnier G. E., Hargett L., Hogan B. L. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev. 1997 Apr 1;11(7):926–940. doi: 10.1101/gad.11.7.926. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES