Abstract
During insect development, morphological differences between segments are controlled by the Hox gene family of transcription factors. Recent evidence also suggests that variation in the regulatory elements of these genes and their downstream targets underlies the evolution of several segment-specific morphological traits. This review introduces a new model system, the larval oenocyte, for studying the evolution of fate specification by Hox genes at single-cell resolution. Oenocytes are found in a wide range of insects, including species using both the short and the long germ modes of development. Recent progress in our understanding of the genetics and cell biology of oenocyte development in the fruitfly Drosophila melanogaster is discussed. In the D. melanogaster embryo, the formation of this cell type is restricted to the first 7 abdominal segments and is under Hox gene control. Oenocytes delaminate from the dorsal ectoderm of A1-A7 in response to an induction that involves the epidermal growth factor receptor (EGFR) signalling pathway. Although the receptor itself is required in the presumptive oenocytes, its ligand Spitz (Spi) is secreted by a neighbouring chordotonal organ precursor (COP). Thus, in dorsal regions, local signalling from this component of the developing peripheral nervous system induces the formation of oenocytes. In contrast, in lateral regions of the ectoderm, Spi signal from a different COP induces the formation of secondary COPs in a homeogenetic manner. This dorsoventral difference in the fate induced by Spi ligand is controlled by a prepattern in the responding ectoderm that requires the Spalt (Sal) transcription factor. Sal protein is expressed in the dorsal but not lateral ectoderm and acts as a competence modifier to bias the response to Spi ligand in favour of the oenocyte fate. We discuss a recently proposed model that integrates the roles of Sal and the EGFR pathway in oenocyte/chordotonal organ induction. This model should provide a useful starting point for future comparative studies of these ectodermal derivatives in other insects.
Keywords: Hox , homeotic, oenocytes, chordotonal organs, EGF receptor, spalt
Full Text
The Full Text of this article is available as a PDF (226.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akam M. Hox genes in arthropod development and evolution. Biol Bull. 1998 Dec;195(3):373–374. doi: 10.2307/1543151. [DOI] [PubMed] [Google Scholar]
- Akam M. Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int J Dev Biol. 1998;42(3):445–451. [PubMed] [Google Scholar]
- Akam M. Hox genes: from master genes to micromanagers. Curr Biol. 1998 Sep 24;8(19):R676–R678. doi: 10.1016/s0960-9822(98)70433-6. [DOI] [PubMed] [Google Scholar]
- Baikova N. A., Gvozdev V. A., Kramerov A. A. Tkanevaia lokalizatsiia "khitinoproteina", vyiavliaemaia s pomoshch'iu spetsificheskikh antitel, v razvitii Drosophila melanogaster. Ontogenez. 1993 Mar-Apr;24(2):33–42. [PubMed] [Google Scholar]
- Bang A. G., Kintner C. Rhomboid and Star facilitate presentation and processing of the Drosophila TGF-alpha homolog Spitz. Genes Dev. 2000 Jan 15;14(2):177–186. [PMC free article] [PubMed] [Google Scholar]
- Bier E., Jan L. Y., Jan Y. N. rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster. Genes Dev. 1990 Feb;4(2):190–203. doi: 10.1101/gad.4.2.190. [DOI] [PubMed] [Google Scholar]
- Brewster R., Bodmer R. Cell lineage analysis of the Drosophila peripheral nervous system. Dev Genet. 1996;18(1):50–63. doi: 10.1002/(SICI)1520-6408(1996)18:1<50::AID-DVG6>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
- Brewster R., Bodmer R. Origin and specification of type II sensory neurons in Drosophila. Development. 1995 Sep;121(9):2923–2936. doi: 10.1242/dev.121.9.2923. [DOI] [PubMed] [Google Scholar]
- Chen C. K., Kühnlein R. P., Eulenberg K. G., Vincent S., Affolter M., Schuh R. The transcription factors KNIRPS and KNIRPS RELATED control cell migration and branch morphogenesis during Drosophila tracheal development. Development. 1998 Dec;125(24):4959–4968. doi: 10.1242/dev.125.24.4959. [DOI] [PubMed] [Google Scholar]
- Dorn A., Romer F. Structure and function of prothoracic glands and oenocytes in embryos and last larval instars of Oncopeltus fasciatus Dallas (Insecta, Heteroptera). Cell Tissue Res. 1976 Aug 26;171(3):331–350. doi: 10.1007/BF00224658. [DOI] [PubMed] [Google Scholar]
- Elstob P. R., Brodu V., Gould A. P. spalt-dependent switching between two cell fates that are induced by the Drosophila EGF receptor. Development. 2001 Mar;128(5):723–732. doi: 10.1242/dev.128.5.723. [DOI] [PubMed] [Google Scholar]
- Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell. 1996 Nov 15;87(4):651–660. doi: 10.1016/s0092-8674(00)81385-9. [DOI] [PubMed] [Google Scholar]
- Freeman M. The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech Dev. 1994 Oct;48(1):25–33. doi: 10.1016/0925-4773(94)90003-5. [DOI] [PubMed] [Google Scholar]
- Graba Y., Aragnol D., Pradel J. Drosophila Hox complex downstream targets and the function of homeotic genes. Bioessays. 1997 May;19(5):379–388. doi: 10.1002/bies.950190505. [DOI] [PubMed] [Google Scholar]
- Hartenstein A. Y., Rugendorff A., Tepass U., Hartenstein V. The function of the neurogenic genes during epithelial development in the Drosophila embryo. Development. 1992 Dec;116(4):1203–1220. doi: 10.1242/dev.116.4.1203. [DOI] [PubMed] [Google Scholar]
- Jarman A. P., Grau Y., Jan L. Y., Jan Y. N. atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell. 1993 Jul 2;73(7):1307–1321. doi: 10.1016/0092-8674(93)90358-w. [DOI] [PubMed] [Google Scholar]
- Kühnlein R. P., Frommer G., Friedrich M., Gonzalez-Gaitan M., Weber A., Wagner-Bernholz J. F., Gehring W. J., Jäckle H., Schuh R. spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo. EMBO J. 1994 Jan 1;13(1):168–179. doi: 10.1002/j.1460-2075.1994.tb06246.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lage P., Jan Y. N., Jarman A. P. Requirement for EGF receptor signalling in neural recruitment during formation of Drosophila chordotonal sense organ clusters. Curr Biol. 1997 Mar 1;7(3):166–175. doi: 10.1016/s0960-9822(97)70087-3. [DOI] [PubMed] [Google Scholar]
- McGinnis W., Krumlauf R. Homeobox genes and axial patterning. Cell. 1992 Jan 24;68(2):283–302. doi: 10.1016/0092-8674(92)90471-n. [DOI] [PubMed] [Google Scholar]
- Mlodzik M., Hiromi Y., Weber U., Goodman C. S., Rubin G. M. The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell. 1990 Jan 26;60(2):211–224. doi: 10.1016/0092-8674(90)90737-y. [DOI] [PubMed] [Google Scholar]
- O'Neill E. M., Rebay I., Tjian R., Rubin G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell. 1994 Jul 15;78(1):137–147. doi: 10.1016/0092-8674(94)90580-0. [DOI] [PubMed] [Google Scholar]
- Okabe M., Okano H. Two-step induction of chordotonal organ precursors in Drosophila embryogenesis. Development. 1997 Mar;124(5):1045–1053. doi: 10.1242/dev.124.5.1045. [DOI] [PubMed] [Google Scholar]
- Palopoli M. F., Patel N. H. Evolution of the interaction between Hox genes and a downstream target. Curr Biol. 1998 May 7;8(10):587–590. doi: 10.1016/s0960-9822(98)70228-3. [DOI] [PubMed] [Google Scholar]
- Pradel J., White R. A. From selectors to realizators. Int J Dev Biol. 1998;42(3):417–421. [PubMed] [Google Scholar]
- Rinterknecht E., Matz G. Oenocyte differentiation correlated with the formation of ectodermal coating in the embryo of a cockroach. Tissue Cell. 1983;15(3):375–390. doi: 10.1016/0040-8166(83)90070-8. [DOI] [PubMed] [Google Scholar]
- Romer F., Emmerich H., Nowock J. Biosynthesis of ecdysones in isolated prothoracic glands and oenocytes of Tenebrio molitor in vitro. J Insect Physiol. 1974 Oct;20(10):1975–1987. doi: 10.1016/0022-1910(74)90105-x. [DOI] [PubMed] [Google Scholar]
- Romer F. Häutungshormone in den Oenocyten des Mehilkäfers. Naturwissenschaften. 1971 Jun;58(6):324–325. doi: 10.1007/BF00624746. [DOI] [PubMed] [Google Scholar]
- Rusten T. E., Cantera R., Urban J., Technau G., Kafatos F. C., Barrio R. Spalt modifies EGFR-mediated induction of chordotonal precursors in the embryonic PNS of Drosophila promoting the development of oenocytes. Development. 2001 Mar;128(5):711–722. doi: 10.1242/dev.128.5.711. [DOI] [PubMed] [Google Scholar]
- Tio M., Ma C., Moses K. spitz, a Drosophila homolog of transforming growth factor-alpha, is required in the founding photoreceptor cells of the compound eye facets. Mech Dev. 1994 Oct;48(1):13–23. doi: 10.1016/0925-4773(94)90002-7. [DOI] [PubMed] [Google Scholar]
- Weatherbee S. D., Nijhout H. F., Grunert L. W., Halder G., Galant R., Selegue J., Carroll S. Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr Biol. 1999 Feb 11;9(3):109–115. doi: 10.1016/s0960-9822(99)80064-5. [DOI] [PubMed] [Google Scholar]
- de Celis J. F., Barrio R. Function of the spalt/spalt-related gene complex in positioning the veins in the Drosophila wing. Mech Dev. 2000 Mar 1;91(1-2):31–41. doi: 10.1016/s0925-4773(99)00261-0. [DOI] [PubMed] [Google Scholar]
- de Celis J. F., Barrio R., Kafatos F. C. Regulation of the spalt/spalt-related gene complex and its function during sensory organ development in the Drosophila thorax. Development. 1999 Jun;126(12):2653–2662. doi: 10.1242/dev.126.12.2653. [DOI] [PubMed] [Google Scholar]