Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Jul-Aug;199(Pt 1-2):133–141. doi: 10.1046/j.1469-7580.2001.19910133.x

The development and evolution of the pharyngeal arches

ANTHONY GRAHAM 1,
PMCID: PMC1594982  PMID: 11523815

Abstract

A muscularised pharynx, with skeletal support, serving the dual functions of feeding and respiration, is a fundamental vertebrate characteristic. Embryologically, the pharyngeal apparatus has its origin in a series of bulges that form on the lateral surface of the embryonic head, the pharyngeal arches, whose development is complex. These structures are composed of a number of disparate embryonic cell types: ectoderm, endoderm, neural crest and mesoderm, whose development must be coordinated to generate the functional adult apparatus. In the past, most studies have emphasised the role played by the neural crest, which generates the skeletal elements of the arches, in directing pharyngeal arch development, but it has also become apparent that the endoderm plays a prominent role in directing arch development. Neural crest cells are not required for arch formation, their regionalisation nor to some extent their sense of identity. Furthermore, the endoderm is the major site of expression of a number of important signalling molecules, and this tissue has been shown to be responsible for promoting the formation of particular components of the arches. Thus vertebrate pharyngeal morphogenesis can now be seen to be a more complex process than was previously believed, and must result from an integration of both neural crest and endodermal patterning mechanisms. Interestingly, this also mirrors the fact that the evolutionary origin of pharyngeal segmentation predates that of the neural crest, which is an exclusively vertebrate characteristic. As such, the evolution of the vertebrate pharynx is also likely to have resulted from an integration between these 2 patterning systems. Alterations in the interplay between neural crest and endodermal patterning are also likely to be responsible for the evolutionary that occurred to the pharyngeal region during subsequent vertebrate evolution.

Keywords: Pharynx, pharyngeal, endoderm, neural crest, evolution

Full Text

The Full Text of this article is available as a PDF (266.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlow L. A., Northcutt R. G. Taste buds develop autonomously from endoderm without induction by cephalic neural crest or paraxial mesoderm. Development. 1997 Mar;124(5):949–957. doi: 10.1242/dev.124.5.949. [DOI] [PubMed] [Google Scholar]
  2. Begbie J., Brunet J. F., Rubenstein J. L., Graham A. Induction of the epibranchial placodes. Development. 1999 Feb;126(5):895–902. doi: 10.1242/dev.126.5.895. [DOI] [PubMed] [Google Scholar]
  3. Birgbauer E., Sechrist J., Bronner-Fraser M., Fraser S. Rhombomeric origin and rostrocaudal reassortment of neural crest cells revealed by intravital microscopy. Development. 1995 Apr;121(4):935–945. doi: 10.1242/dev.121.4.935. [DOI] [PubMed] [Google Scholar]
  4. Cordier A. C., Haumont S. M. Development of thymus, parathyroids, and ultimo-branchial bodies in NMRI and nude mice. Am J Anat. 1980 Mar;157(3):227–263. doi: 10.1002/aja.1001570303. [DOI] [PubMed] [Google Scholar]
  5. Couly G. F., Coltey P. M., Le Douarin N. M. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development. 1992 Jan;114(1):1–15. doi: 10.1242/dev.114.1.1. [DOI] [PubMed] [Google Scholar]
  6. Couly G. F., Coltey P. M., Le Douarin N. M. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development. 1993 Feb;117(2):409–429. doi: 10.1242/dev.117.2.409. [DOI] [PubMed] [Google Scholar]
  7. Couly G., Le Douarin N. M. Head morphogenesis in embryonic avian chimeras: evidence for a segmental pattern in the ectoderm corresponding to the neuromeres. Development. 1990 Apr;108(4):543–558. doi: 10.1242/dev.108.4.543. [DOI] [PubMed] [Google Scholar]
  8. D'Amico-Martel A., Noden D. M. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat. 1983 Apr;166(4):445–468. doi: 10.1002/aja.1001660406. [DOI] [PubMed] [Google Scholar]
  9. Eickholt B. J., Mackenzie S. L., Graham A., Walsh F. S., Doherty P. Evidence for collapsin-1 functioning in the control of neural crest migration in both trunk and hindbrain regions. Development. 1999 May;126(10):2181–2189. doi: 10.1242/dev.126.10.2181. [DOI] [PubMed] [Google Scholar]
  10. Epperlein H. H. The ectomesenchymal-endodermal interaction-system (EEIS) of Triturus alpestris in tissue culture. I. Observations on attachment, migration and differentiation of neural crest cells. Differentiation. 1974 Jun;2(3):151–168. doi: 10.1111/j.1432-0436.1974.tb00349.x. [DOI] [PubMed] [Google Scholar]
  11. Finger T. E. Evolution of taste and solitary chemoreceptor cell systems. Brain Behav Evol. 1997;50(4):234–243. doi: 10.1159/000113337. [DOI] [PubMed] [Google Scholar]
  12. Gans C., Northcutt R. G. Neural crest and the origin of vertebrates: a new head. Science. 1983 Apr 15;220(4594):268–273. doi: 10.1126/science.220.4594.268. [DOI] [PubMed] [Google Scholar]
  13. Gendron-Maguire M., Mallo M., Zhang M., Gridley T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell. 1993 Dec 31;75(7):1317–1331. doi: 10.1016/0092-8674(93)90619-2. [DOI] [PubMed] [Google Scholar]
  14. Golding J. P., Trainor P., Krumlauf R., Gassmann M. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nat Cell Biol. 2000 Feb;2(2):103–109. doi: 10.1038/35000058. [DOI] [PubMed] [Google Scholar]
  15. Graham A., Francis-West P., Brickell P., Lumsden A. The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature. 1994 Dec 15;372(6507):684–686. doi: 10.1038/372684a0. [DOI] [PubMed] [Google Scholar]
  16. Graham A., Heyman I., Lumsden A. Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain. Development. 1993 Sep;119(1):233–245. doi: 10.1242/dev.119.1.233. [DOI] [PubMed] [Google Scholar]
  17. Holland L. Z., Holland N. D. Expression of AmphiHox-1 and AmphiPax-1 in amphioxus embryos treated with retinoic acid: insights into evolution and patterning of the chordate nerve cord and pharynx. Development. 1996 Jun;122(6):1829–1838. doi: 10.1242/dev.122.6.1829. [DOI] [PubMed] [Google Scholar]
  18. Horigome N., Myojin M., Ueki T., Hirano S., Aizawa S., Kuratani S. Development of cephalic neural crest cells in embryos of Lampetra japonica, with special reference to the evolution of the jaw. Dev Biol. 1999 Mar 15;207(2):287–308. doi: 10.1006/dbio.1998.9175. [DOI] [PubMed] [Google Scholar]
  19. Kozmik Z., Holland N. D., Kalousova A., Paces J., Schubert M., Holland L. Z. Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development. 1999 Mar;126(6):1295–1304. doi: 10.1242/dev.126.6.1295. [DOI] [PubMed] [Google Scholar]
  20. Köntges G., Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development. 1996 Oct;122(10):3229–3242. doi: 10.1242/dev.122.10.3229. [DOI] [PubMed] [Google Scholar]
  21. Le Douarin N. M., Jotereau F. V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J Exp Med. 1975 Jul 1;142(1):17–40. doi: 10.1084/jem.142.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lumsden A., Sprawson N., Graham A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development. 1991 Dec;113(4):1281–1291. doi: 10.1242/dev.113.4.1281. [DOI] [PubMed] [Google Scholar]
  23. Niederländer C., Lumsden A. Late emigrating neural crest cells migrate specifically to the exit points of cranial branchiomotor nerves. Development. 1996 Aug;122(8):2367–2374. doi: 10.1242/dev.122.8.2367. [DOI] [PubMed] [Google Scholar]
  24. Pasqualetti M., Ori M., Nardi I., Rijli F. M. Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development. 2000 Dec;127(24):5367–5378. doi: 10.1242/dev.127.24.5367. [DOI] [PubMed] [Google Scholar]
  25. Piotrowski T., Nüsslein-Volhard C. The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev Biol. 2000 Sep 15;225(2):339–356. doi: 10.1006/dbio.2000.9842. [DOI] [PubMed] [Google Scholar]
  26. Prince V., Lumsden A. Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development. 1994 Apr;120(4):911–923. doi: 10.1242/dev.120.4.911. [DOI] [PubMed] [Google Scholar]
  27. Rijli F. M., Mark M., Lakkaraju S., Dierich A., Dollé P., Chambon P. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell. 1993 Dec 31;75(7):1333–1349. doi: 10.1016/0092-8674(93)90620-6. [DOI] [PubMed] [Google Scholar]
  28. Schilling T. F., Kimmel C. B. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development. 1994 Mar;120(3):483–494. doi: 10.1242/dev.120.3.483. [DOI] [PubMed] [Google Scholar]
  29. Smith A., Graham A. Restricting Bmp-4 mediated apoptosis in hindbrain neural crest. Dev Dyn. 2001 Mar;220(3):276–283. doi: 10.1002/1097-0177(20010301)220:3<276::AID-DVDY1110>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  30. Smith A., Robinson V., Patel K., Wilkinson D. G. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr Biol. 1997 Aug 1;7(8):561–570. doi: 10.1016/s0960-9822(06)00255-7. [DOI] [PubMed] [Google Scholar]
  31. Tan S. S., Morriss-Kay G. The development and distribution of the cranial neural crest in the rat embryo. Cell Tissue Res. 1985;240(2):403–416. doi: 10.1007/BF00222353. [DOI] [PubMed] [Google Scholar]
  32. Trainor P. A., Tan S. S., Tam P. P. Cranial paraxial mesoderm: regionalisation of cell fate and impact on craniofacial development in mouse embryos. Development. 1994 Sep;120(9):2397–2408. doi: 10.1242/dev.120.9.2397. [DOI] [PubMed] [Google Scholar]
  33. Tucker A. S., Sharpe P. T. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res. 1999 Apr;78(4):826–834. doi: 10.1177/00220345990780040201. [DOI] [PubMed] [Google Scholar]
  34. Veitch E., Begbie J., Schilling T. F., Smith M. M., Graham A. Pharyngeal arch patterning in the absence of neural crest. Curr Biol. 1999 Dec 16;9(24):1481–1484. doi: 10.1016/s0960-9822(00)80118-9. [DOI] [PubMed] [Google Scholar]
  35. Verwoerd C. D., van Oostrom C. G. Cephalic neural crest and placodes. Adv Anat Embryol Cell Biol. 1979;58:1–75. [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES