Abstract
Protein storage vacuoles were examined for the induction of H+-pyrophosphatase (H+-PPase), H+-ATPase, and a membrane integral protein of 23 kD after seed germination. Membranes of protein storage vacuoles were prepared from dry seeds and etiolated cotyledons of pumpkin (Cucurbita sp.). Membrane vesicles from etiolated cotyledons had ATP- and pyrophosphate-dependent H+-transport activities. H+-ATPase activity was sensitive to nitrate and bafilomycin, and H+-PPase activity was stimulated by potassium ion and inhibited by dicyclohexylcarbodiimide. The activities of both enzymes increased after seed germination. On immunoblot analysis, the 73-kD polypeptide of H+-PPase and the two major subunits, 68 and 57 kD, of vacuolar H+-ATPase were detected in the vacuolar membranes of cotyledons, and the levels of the subunits of enzymes increased parallel to those of enzyme activities. Small amounts of the subunits of the enzymes were detected in dry cotyledons. Immunocytochemical analysis of the cotyledonous cells with anti-H+-PPase showed the close association of H+-PPase to the membranes of protein storage vacuoles. In endosperms of castor bean (Ricinus communis), both enzymes and their subunits increased after germination. Furthermore, the vacuolar membranes from etiolated cotyledons of pumpkin had a polypeptide that cross-reacted with antibody against a 23-kD membrane protein of radish vacuole, VM23, but the membranes of dry cotyledons did not. The results from this study suggest that H+-ATPase, H+-PPase, and VM23 are expressed and accumulated in the membranes of protein storage vacuoles after seed germination. Overall, the findings indicate that the membranes of protein storage vacuoles are transformed into those of central vacuoles during the growth of seedlings.
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hara-Hishimura I., Takeuchi Y., Inoue K., Nishimura M. Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J. 1993 Nov;4(5):793–800. doi: 10.1046/j.1365-313x.1993.04050793.x. [DOI] [PubMed] [Google Scholar]
- Hara-Nishimura I., Nishimura M., Matsubara H., Akazawa T. Suborganellar localization of proteinase catalyzing the limited hydrolysis of pumpkin globulin. Plant Physiol. 1982 Sep;70(3):699–703. doi: 10.1104/pp.70.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höfte H., Hubbard L., Reizer J., Ludevid D., Herman E. M., Chrispeels M. J. Vegetative and Seed-Specific Forms of Tonoplast Intrinsic Protein in the Vacuolar Membrane of Arabidopsis thaliana. Plant Physiol. 1992 Jun;99(2):561–570. doi: 10.1104/pp.99.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson K. D., Höfte H., Chrispeels M. J. An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GIpF). Plant Cell. 1990 Jun;2(6):525–532. doi: 10.1105/tpc.2.6.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Maeshima M. Characterization of the major integral protein of vacuolar membrane. Plant Physiol. 1992 Apr;98(4):1248–1254. doi: 10.1104/pp.98.4.1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeshima M. H(+)-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur J Biochem. 1991 Feb 26;196(1):11–17. doi: 10.1111/j.1432-1033.1991.tb15779.x. [DOI] [PubMed] [Google Scholar]
- Maeshima M., Yoshida S. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem. 1989 Nov 25;264(33):20068–20073. [PubMed] [Google Scholar]
- Matsuura-Endo C., Maeshima M., Yoshida S. Mechanism of the Decline in Vacuolar H -ATPase Activity in Mung Bean Hypocotyls during Chilling. Plant Physiol. 1992 Oct;100(2):718–722. doi: 10.1104/pp.100.2.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuura-Endo C., Maeshima M., Yoshida S. Subunit composition of vacuolar membrane H(+)-ATPase from mung bean. Eur J Biochem. 1990 Feb 14;187(3):745–751. doi: 10.1111/j.1432-1033.1990.tb15362.x. [DOI] [PubMed] [Google Scholar]
- Maurel C., Reizer J., Schroeder J. I., Chrispeels M. J. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J. 1993 Jun;12(6):2241–2247. doi: 10.1002/j.1460-2075.1993.tb05877.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishimura M. pH in Vacuoles Isolated from Castor Bean Endosperm. Plant Physiol. 1982 Sep;70(3):742–744. doi: 10.1104/pp.70.3.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rea P. A., Kim Y., Sarafian V., Poole R. J., Davies J. M., Sanders D. Vacuolar H(+)-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci. 1992 Sep;17(9):348–353. doi: 10.1016/0968-0004(92)90313-x. [DOI] [PubMed] [Google Scholar]
- Rea P. A., Poole R. J. Chromatographic resolution of h-translocating pyrophosphatase from h-translocating ATPase of higher plant tonoplast. Plant Physiol. 1986 May;81(1):126–129. doi: 10.1104/pp.81.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarafian V., Kim Y., Poole R. J., Rea P. A. Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1775–1779. doi: 10.1073/pnas.89.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarafian V., Poole R. J. Purification of an h-translocating inorganic pyrophosphatase from vacuole membranes of red beet. Plant Physiol. 1989 Sep;91(1):34–38. doi: 10.1104/pp.91.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato M. H., Maeshima M., Ohsumi Y., Yoshida M. Dimeric structure of H(+)-translocating pyrophosphatase from pumpkin vacuolar membranes. FEBS Lett. 1991 Sep 23;290(1-2):177–180. doi: 10.1016/0014-5793(91)81254-6. [DOI] [PubMed] [Google Scholar]
- Sze H, Ward JM, Lai S, Perera I., I VACUOLAR-TYPE H+-TRANSLOCATING ATPases IN PLANT ENDOMEMBRANES: SUBUNIT ORGANIZATION AND MULTIGENE FAMILIES. J Exp Biol. 1992 Nov 1;172(Pt 1):123–135. doi: 10.1242/jeb.172.1.123. [DOI] [PubMed] [Google Scholar]
- Taiz L. THE PLANT VACUOLE. J Exp Biol. 1992 Nov 1;172(Pt 1):113–122. doi: 10.1242/jeb.172.1.113. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Chiba K., Maeda M., Maeshima M. Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1110–1114. doi: 10.1006/bbrc.1993.1164. [DOI] [PubMed] [Google Scholar]
- Van der Wilden W., Herman E. M., Chrispeels M. J. Protein bodies of mung bean cotyledons as autophagic organelles. Proc Natl Acad Sci U S A. 1980 Jan;77(1):428–432. doi: 10.1073/pnas.77.1.428. [DOI] [PMC free article] [PubMed] [Google Scholar]