Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Jul-Aug;199(Pt 1-2):169–175. doi: 10.1046/j.1469-7580.2001.19910169.x

The vertebrate segmentation clock

OLIVIER POURQUIE 1,
PMCID: PMC1594994  PMID: 11523819

Abstract

Vertebrate somitogenesis has been shown to be associated with a molecular oscillator, the segmentation clock, whose periodicity matches that of the process of somitogenesis. The existence of such a clock in presomitic mesoderm (PSM) cells was originally proposed in theoretical models such as the ‘clock and wavefront’. Molecular evidence for the existence of this clock in vertebrates has been obtained on the basis of the periodic expression of several genes, most of which are related to the Notch signalling pathway. These genes are expressed in a dynamic sequence which appears as a wave sweeping caudo-rostrally along the whole PSM once during each somite formation. Notch-pathway mouse and fish mutants lose the dynamic expression of the cycling genes, indicating that Notch signalling is required for their periodic expression, or is required to coordinate the oscillations between PSM cells. Therefore Notch signalling is either part of the mechanism of the oscillator itself or acts as a cofactor required for cycling gene expression. A further potentially important role for the segmentation clock is to periodically activate Notch signalling in the rostral presomitic mesoderm, thereby generating the periodic formation of somite boundaries.

Keywords: Chick embryo, hairy , somite, Notch signalling, segmentation clock

Full Text

The Full Text of this article is available as a PDF (164.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artavanis-Tsakonas S., Rand M. D., Lake R. J. Notch signaling: cell fate control and signal integration in development. Science. 1999 Apr 30;284(5415):770–776. doi: 10.1126/science.284.5415.770. [DOI] [PubMed] [Google Scholar]
  2. Aulehla A., Johnson R. L. Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation. Dev Biol. 1999 Mar 1;207(1):49–61. doi: 10.1006/dbio.1998.9164. [DOI] [PubMed] [Google Scholar]
  3. Barolo S., Levine M. hairy mediates dominant repression in the Drosophila embryo. EMBO J. 1997 May 15;16(10):2883–2891. doi: 10.1093/emboj/16.10.2883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barrantes I. B., Elia A. J., Wünsch K., Hrabe de Angelis M. H., Mak T. W., Rossant J., Conlon R. A., Gossler A., de la Pompa J. L. Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr Biol. 1999 May 6;9(9):470–480. doi: 10.1016/s0960-9822(99)80212-7. [DOI] [PubMed] [Google Scholar]
  5. Cooke J. A gene that resuscitates a theory--somitogenesis and a molecular oscillator. Trends Genet. 1998 Mar;14(3):85–88. doi: 10.1016/s0168-9525(98)01396-1. [DOI] [PubMed] [Google Scholar]
  6. Evrard Y. A., Lun Y., Aulehla A., Gan L., Johnson R. L. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature. 1998 Jul 23;394(6691):377–381. doi: 10.1038/28632. [DOI] [PubMed] [Google Scholar]
  7. Forsberg H., Crozet F., Brown N. A. Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr Biol. 1998 Sep 10;8(18):1027–1030. doi: 10.1016/s0960-9822(07)00424-1. [DOI] [PubMed] [Google Scholar]
  8. Holley S. A., Geisler R., Nüsslein-Volhard C. Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. Genes Dev. 2000 Jul 1;14(13):1678–1690. [PMC free article] [PubMed] [Google Scholar]
  9. Irvine K. D. Fringe, Notch, and making developmental boundaries. Curr Opin Genet Dev. 1999 Aug;9(4):434–441. doi: 10.1016/S0959-437X(99)80066-5. [DOI] [PubMed] [Google Scholar]
  10. Jarriault S., Brou C., Logeat F., Schroeter E. H., Kopan R., Israel A. Signalling downstream of activated mammalian Notch. Nature. 1995 Sep 28;377(6547):355–358. doi: 10.1038/377355a0. [DOI] [PubMed] [Google Scholar]
  11. Jiang Y. J., Aerne B. L., Smithers L., Haddon C., Ish-Horowicz D., Lewis J. Notch signalling and the synchronization of the somite segmentation clock. Nature. 2000 Nov 23;408(6811):475–479. doi: 10.1038/35044091. [DOI] [PubMed] [Google Scholar]
  12. Johnston S. H., Rauskolb C., Wilson R., Prabhakaran B., Irvine K. D., Vogt T. F. A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development. 1997 Jun;124(11):2245–2254. doi: 10.1242/dev.124.11.2245. [DOI] [PubMed] [Google Scholar]
  13. Jouve C., Palmeirim I., Henrique D., Beckers J., Gossler A., Ish-Horowicz D., Pourquié O. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development. 2000 Apr;127(7):1421–1429. doi: 10.1242/dev.127.7.1421. [DOI] [PubMed] [Google Scholar]
  14. Leimeister C., Dale K., Fischer A., Klamt B., Hrabe de Angelis M., Radtke F., McGrew M. J., Pourquié O., Gessler M. Oscillating expression of c-Hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors. Dev Biol. 2000 Nov 1;227(1):91–103. doi: 10.1006/dbio.2000.9884. [DOI] [PubMed] [Google Scholar]
  15. McGrew M. J., Dale J. K., Fraboulet S., Pourquié O. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr Biol. 1998 Aug 27;8(17):979–982. doi: 10.1016/s0960-9822(98)70401-4. [DOI] [PubMed] [Google Scholar]
  16. Moloney D. J., Panin V. M., Johnston S. H., Chen J., Shao L., Wilson R., Wang Y., Stanley P., Irvine K. D., Haltiwanger R. S. Fringe is a glycosyltransferase that modifies Notch. Nature. 2000 Jul 27;406(6794):369–375. doi: 10.1038/35019000. [DOI] [PubMed] [Google Scholar]
  17. Munro S., Freeman M. The notch signalling regulator fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DXD. Curr Biol. 2000 Jul 13;10(14):813–820. doi: 10.1016/s0960-9822(00)00578-9. [DOI] [PubMed] [Google Scholar]
  18. Palmeirim I., Henrique D., Ish-Horowicz D., Pourquié O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell. 1997 Nov 28;91(5):639–648. doi: 10.1016/s0092-8674(00)80451-1. [DOI] [PubMed] [Google Scholar]
  19. Pourquié O. Notch around the clock. Curr Opin Genet Dev. 1999 Oct;9(5):559–565. doi: 10.1016/s0959-437x(99)00011-8. [DOI] [PubMed] [Google Scholar]
  20. Sawada A., Fritz A., Jiang Y. J., Yamamoto A., Yamasu K., Kuroiwa A., Saga Y., Takeda H. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development. 2000 Apr;127(8):1691–1702. doi: 10.1242/dev.127.8.1691. [DOI] [PubMed] [Google Scholar]
  21. Stern C. D., Fraser S. E., Keynes R. J., Primmett D. R. A cell lineage analysis of segmentation in the chick embryo. Development. 1988;104 (Suppl):231–244. doi: 10.1242/dev.104.Supplement.231. [DOI] [PubMed] [Google Scholar]
  22. Takebayashi K., Sasai Y., Sakai Y., Watanabe T., Nakanishi S., Kageyama R. Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-1. Negative autoregulation through the multiple N box elements. J Biol Chem. 1994 Feb 18;269(7):5150–5156. [PubMed] [Google Scholar]
  23. Takke C., Campos-Ortega J. A. her1, a zebrafish pair-rule like gene, acts downstream of notch signalling to control somite development. Development. 1999 Jul;126(13):3005–3014. doi: 10.1242/dev.126.13.3005. [DOI] [PubMed] [Google Scholar]
  24. de la Pompa J. L., Wakeham A., Correia K. M., Samper E., Brown S., Aguilera R. J., Nakano T., Honjo T., Mak T. W., Rossant J. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development. 1997 Mar;124(6):1139–1148. doi: 10.1242/dev.124.6.1139. [DOI] [PubMed] [Google Scholar]
  25. van Eeden F. J., Holley S. A., Haffter P., Nüsslein-Volhard C. Zebrafish segmentation and pair-rule patterning. Dev Genet. 1998;23(1):65–76. doi: 10.1002/(SICI)1520-6408(1998)23:1<65::AID-DVG7>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES