Abstract
The formation of crossveins in Drosophila was an important early case study in understanding the role of the environment in the development and evolution of morphological structures. More recent work has shown that signalling processes play a crucial role in the formation of crossveins in Drosophila and that the interaction of a heat shock factor, Hsp90, with components of signal transduction pathways may account for the sensitivity of these structures to environmental perturbations. A new model for the development of crossveins is presented that divides the formation of crossveins into 3 separate stages. First, the number and placement of the crossveins is determined by signalling along the proximal-distal axis of the wing. This signal may involve the cdc42 gene product and the Jun-N-terminal Kinase signal transduction pathway. Then, during the second stage, an inductive signal from the dorsal wing epithelium is sent to the ventral wing epithelium at locations specified by the first signal. The second signal appears to involve the BMP-like signalling pathway. Finally, in the third stage, a domain of vein competent cells is defined by the signalling from the EGF-receptor-Map Kinase signal transduction pathway, and the exact location of the veins is eventually determined within that domain by Notch-Delta signalling interactions. By altering components of these 3 stages, insects can independently regulate the presence or absence, the number and placement, and the thickness and flexibility of the crossveins. This capacity for the modulation of crossvein structure in many different ways may have contributed to the evolution of different modes of insect flight.
Keywords: Crossveins, cell signalling, wing development, insect wing biomechanics, genetic assimilation
Full Text
The Full Text of this article is available as a PDF (298.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abouheif E., Akam M., Dickinson W. J., Holland P. W., Meyer A., Patel N. H., Raff R. A., Roth V. L., Wray G. A. Homology and developmental genes. Trends Genet. 1997 Nov;13(11):432–433. doi: 10.1016/s0168-9525(97)01271-7. [DOI] [PubMed] [Google Scholar]
- Agnès F., Suzanne M., Noselli S. The Drosophila JNK pathway controls the morphogenesis of imaginal discs during metamorphosis. Development. 1999 Dec;126(23):5453–5462. doi: 10.1242/dev.126.23.5453. [DOI] [PubMed] [Google Scholar]
- Biehs B., Sturtevant M. A., Bier E. Boundaries in the Drosophila wing imaginal disc organize vein-specific genetic programs. Development. 1998 Nov;125(21):4245–4257. doi: 10.1242/dev.125.21.4245. [DOI] [PubMed] [Google Scholar]
- Conley C. A., Silburn R., Singer M. A., Ralston A., Rohwer-Nutter D., Olson D. J., Gelbart W., Blair S. S. Crossveinless 2 contains cysteine-rich domains and is required for high levels of BMP-like activity during the formation of the cross veins in Drosophila. Development. 2000 Sep;127(18):3947–3959. doi: 10.1242/dev.127.18.3947. [DOI] [PubMed] [Google Scholar]
- Coso O. A., Chiariello M., Yu J. C., Teramoto H., Crespo P., Xu N., Miki T., Gutkind J. S. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell. 1995 Jun 30;81(7):1137–1146. doi: 10.1016/s0092-8674(05)80018-2. [DOI] [PubMed] [Google Scholar]
- Ellington C. P. Unsteady aerodynamics of insect flight. Symp Soc Exp Biol. 1995;49:109–129. [PubMed] [Google Scholar]
- Finelli A. L., Xie T., Bossie C. A., Blackman R. K., Padgett R. W. The tolkin gene is a tolloid/BMP-1 homologue that is essential for Drosophila development. Genetics. 1995 Sep;141(1):271–281. doi: 10.1093/genetics/141.1.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Genova J. L., Jong S., Camp J. T., Fehon R. G. Functional analysis of Cdc42 in actin filament assembly, epithelial morphogenesis, and cell signaling during Drosophila development. Dev Biol. 2000 May 1;221(1):181–194. doi: 10.1006/dbio.2000.9671. [DOI] [PubMed] [Google Scholar]
- Holley S. J., Yamamoto K. R. A role for Hsp90 in retinoid receptor signal transduction. Mol Biol Cell. 1995 Dec;6(12):1833–1842. doi: 10.1091/mbc.6.12.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huppert S. S., Jacobsen T. L., Muskavitch M. A. Feedback regulation is central to Delta-Notch signalling required for Drosophila wing vein morphogenesis. Development. 1997 Sep;124(17):3283–3291. doi: 10.1242/dev.124.17.3283. [DOI] [PubMed] [Google Scholar]
- Khalsa O., Yoon J. W., Torres-Schumann S., Wharton K. A. TGF-beta/BMP superfamily members, Gbb-60A and Dpp, cooperate to provide pattern information and establish cell identity in the Drosophila wing. Development. 1998 Jul;125(14):2723–2734. doi: 10.1242/dev.125.14.2723. [DOI] [PubMed] [Google Scholar]
- Lehmann FO, m The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). J Exp Biol. 1998;201(3):385–401. doi: 10.1242/jeb.201.3.385. [DOI] [PubMed] [Google Scholar]
- MOHLER J. D., SWEDBERG G. S. WING VEIN DEVELOPMENT IN CROSSVEINLESS-LIKE STRAINS OF DROSOPHILA MELANOGASTER. Genetics. 1964 Dec;50:1403–1419. doi: 10.1093/genetics/50.6.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martín-Blanco E., Gampel A., Ring J., Virdee K., Kirov N., Tolkovsky A. M., Martinez-Arias A. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 1998 Feb 15;12(4):557–570. doi: 10.1101/gad.12.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milkman R D. The Genetic Basis of Natural Variation. I. Crossveins in Drosophila Melanogaster. Genetics. 1960 Jan;45(1):35–48. doi: 10.1093/genetics/45.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohler J D. The Influence of Some Crossveinless-like Genes on the Crossveinless Phenocopy Sensitivity in DROSOPHILA MELANOGASTER. Genetics. 1965 Mar;51(3):329–340. doi: 10.1093/genetics/51.3.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen T., Jamal J., Shimell M. J., Arora K., O'Connor M. B. Characterization of tolloid-related-1: a BMP-1-like product that is required during larval and pupal stages of Drosophila development. Dev Biol. 1994 Dec;166(2):569–586. doi: 10.1006/dbio.1994.1338. [DOI] [PubMed] [Google Scholar]
- Picard D., Khursheed B., Garabedian M. J., Fortin M. G., Lindquist S., Yamamoto K. R. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature. 1990 Nov 8;348(6297):166–168. doi: 10.1038/348166a0. [DOI] [PubMed] [Google Scholar]
- Rutherford S. L., Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature. 1998 Nov 26;396(6709):336–342. doi: 10.1038/24550. [DOI] [PubMed] [Google Scholar]
- Stark J., Bonacum J., Remsen J., DeSalle R. The evolution and development of dipteran wing veins: a systematic approach. Annu Rev Entomol. 1999;44:97–129. doi: 10.1146/annurev.ento.44.1.97. [DOI] [PubMed] [Google Scholar]
- Stepanova L., Leng X., Parker S. B., Harper J. W. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev. 1996 Jun 15;10(12):1491–1502. doi: 10.1101/gad.10.12.1491. [DOI] [PubMed] [Google Scholar]
- Sturtevant M. A., Biehs B., Marin E., Bier E. The spalt gene links the A/P compartment boundary to a linear adult structure in the Drosophila wing. Development. 1997 Jan;124(1):21–32. doi: 10.1242/dev.124.1.21. [DOI] [PubMed] [Google Scholar]
- Sturtevant M. A., Bier E. Analysis of the genetic hierarchy guiding wing vein development in Drosophila. Development. 1995 Mar;121(3):785–801. doi: 10.1242/dev.121.3.785. [DOI] [PubMed] [Google Scholar]
- Sturtevant M. A., Roark M., Bier E. The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway. Genes Dev. 1993 Jun;7(6):961–973. doi: 10.1101/gad.7.6.961. [DOI] [PubMed] [Google Scholar]
- Thompson S. R. The effect of temperature on crossvein formation in crossveinless-like strains of Drosophila melanogaster. Genetics. 1967 May;56(1):13–22. doi: 10.1093/genetics/56.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WADDINGTON C. H. Selection of the genetic basis for an acquired character. Nature. 1952 Apr 12;169(4302):625–626. doi: 10.1038/169625b0. [DOI] [PubMed] [Google Scholar]
- Xu Y., Lindquist S. Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7074–7078. doi: 10.1073/pnas.90.15.7074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu K., Srinivasan S., Shimmi O., Biehs B., Rashka K. E., Kimelman D., O'Connor M. B., Bier E. Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity. Development. 2000 May;127(10):2143–2154. doi: 10.1242/dev.127.10.2143. [DOI] [PubMed] [Google Scholar]
- Yu K., Sturtevant M. A., Biehs B., François V., Padgett R. W., Blackman R. K., Bier E. The Drosophila decapentaplegic and short gastrulation genes function antagonistically during adult wing vein development. Development. 1996 Dec;122(12):4033–4044. doi: 10.1242/dev.122.12.4033. [DOI] [PubMed] [Google Scholar]
- de Celis J. F., Bray S., Garcia-Bellido A. Notch signalling regulates veinlet expression and establishes boundaries between veins and interveins in the Drosophila wing. Development. 1997 May;124(10):1919–1928. doi: 10.1242/dev.124.10.1919. [DOI] [PubMed] [Google Scholar]