Abstract
Highly purified plasma membrane fractions were obtained from onion (Allium cepa L.) roots and used as a source for purification of redox proteins. Plasma membranes solubilized with Triton X-100 contained two distinct polypeptides showing NAD(P)H-dependent dehydrogenase activities. Dehydrogenase I was purified by gel filtration in Sephacryl S-300 HR, ion-exchange chromatography in DEAE-Sepharose CL-6B, and dye-ligand affinity chromatography in Blue-Sepharose CL-6B after biospecific elution with NADH. Dehydrogenase I consisted of a single polypeptide of about 27 kD and an isoelectric point of about 6. Dehydrogenase II was purified from the DEAE-unbound fraction by chromatography in Blue-Sepharose CL-6B and affinity elution with NADH. Dehydrogenase II consisted of a single polypeptide of about 31 kD and an isoelectric point of about 8. Purified dehydrogenase I oxidized both NADPH and NADH, although higher rates of electron transfer were obtained with NADPH. Maximal activity was achieved with NADPH as donor and juglone or coenzyme Q as acceptor. Dehydrogenase II was specific for NADH and exhibited maximal activity with ferricyanide. Optimal pH for both dehydrogenases was about 6. Dehydrogenase I was moderately inhibited by dicumarol, thenoyltrifluoroacetone, and the thiol reagent N-ethyl-maleimide. A strong inhibition of dehydrogenase II was obtained with dicumarol, thenoyltrifluoroacetone, and the thiol reagent p-hydroxymercuribenzoate.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Askerlund P., Larsson C. Transmembrane Electron Transport in Plasma Membrane Vesicles Loaded with an NADH-Generating System or Ascorbate. Plant Physiol. 1991 Aug;96(4):1178–1184. doi: 10.1104/pp.96.4.1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bot M. Marrie Bot: van buitenstaander tot betrokkene. TVZ. 1989 Mar 23;43(6):180–183. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brightman A. O., Barr R., Crane F. L., Morré D. J. Auxin-Stimulated NADH Oxidase Purified from Plasma Membrane of Soybean. Plant Physiol. 1988 Apr;86(4):1264–1269. doi: 10.1104/pp.86.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crane F. L., Sun I. L., Clark M. G., Grebing C., Löw H. Transplasma-membrane redox systems in growth and development. Biochim Biophys Acta. 1985 Aug 1;811(3):233–264. doi: 10.1016/0304-4173(85)90013-8. [DOI] [PubMed] [Google Scholar]
- Gonzalez-Reyes J. A., Hidalgo A., Caler J. A., Palos R., Navas P. Nutrient Uptake Changes in Ascorbate Free Radical-Stimulated Onion Roots. Plant Physiol. 1994 Jan;104(1):271–276. doi: 10.1104/pp.104.1.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerrini F., Valenti V., Pupillo P. Solubilization and Purification of NAD(P)H Dehydrogenase of Cucurbita Microsomes. Plant Physiol. 1987 Nov;85(3):828–834. doi: 10.1104/pp.85.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holden M. J., Luster D. G., Chaney R. L., Buckhout T. J., Robinson C. Fe-Chelate Reductase Activity of Plasma Membranes Isolated from Tomato (Lycopersicon esculentum Mill.) Roots : Comparison of Enzymes from Fe-Deficient and Fe-Sufficient Roots. Plant Physiol. 1991 Oct;97(2):537–544. doi: 10.1104/pp.97.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lord J. M., Kagawa T., Moore T. S., Beevers H. Endoplasmic reticulum as the site of lecithin formation in castor bean endosperm. J Cell Biol. 1973 Jun;57(3):659–667. doi: 10.1083/jcb.57.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luster D. G., Buckhout T. J. Purification and Identification of a Plasma Membrane Associated Electron Transport Protein from Maize (Zea mays L.) Roots. Plant Physiol. 1989 Nov;91(3):1014–1019. doi: 10.1104/pp.91.3.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Van Keuren M. L. Gel protein stains: silver stain. Methods Enzymol. 1984;104:441–447. doi: 10.1016/s0076-6879(84)04111-2. [DOI] [PubMed] [Google Scholar]
- Møller I. M., Rasmusson A. G., Fredlund K. M. NAD(P)H-ubiquinone oxidoreductases in plant mitochondria. J Bioenerg Biomembr. 1993 Aug;25(4):377–384. doi: 10.1007/BF00762463. [DOI] [PubMed] [Google Scholar]
- Storrie B., Madden E. A. Isolation of subcellular organelles. Methods Enzymol. 1990;182:203–225. doi: 10.1016/0076-6879(90)82018-w. [DOI] [PubMed] [Google Scholar]
- Sun I. L., Crane F. L., Löw H., Grebing C. Inhibition of plasma membrane NADH dehydrogenase by adriamycin and related anthracycline antibiotics. J Bioenerg Biomembr. 1984 Jun;16(3):209–221. doi: 10.1007/BF00751050. [DOI] [PubMed] [Google Scholar]
- Villalba J. M., Canalejo A., Burón M. I., Córdoba F., Navas P. Thiol groups are involved in NADH-ascorbate free radical reductase activity of rat liver plasma membrane. Biochem Biophys Res Commun. 1993 Apr 30;192(2):707–713. doi: 10.1006/bbrc.1993.1472. [DOI] [PubMed] [Google Scholar]