Abstract
Cultivars of Triticum aestivum differing in resistance to Al were grown under aseptic conditions in the presence and absence of Al and polypeptides present in root exudates were collected, concentrated, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon exposure to 100 and 200 [mu]M Al, root elongation in Al-sensitive cultivars was reduced by 30 and 65%, respectively, whereas root elongation in resistant cultivars was reduced by only 15 and 30%. Accumulation of polypeptides in the growth medium increased with time for 96 to 120 h, with little additional accumulation thereafter. This pattern of exudation was virtually unaffected by exposure to 100 [mu]M Al in the Al-resistant cultivars Atlas 66 and Maringa, whereas total accumulation was reduced in sensitive cultivars. Changes in exudation were consistent with alterations in root elongation. Al-induced or Al-enhanced polypeptide bands were detected in Atlas 66 and Maringa after 72 h of exposure to Al. Increased accumulation of 12-, 22-, and 33-kD bands was observed at 75 [mu]M Al in Atlas 66 and 12-, 23-, and 43.5-kD bands started to appear at 50 [mu]M Al in Maringa. In the Al-sensitive cultivars Roblin and Katepwa, no significant effect on polypeptide profiles was observed at values up to 100 [mu]M Al. When root exudates were separated by ultrafiltration and the Al content was measured in both high molecular mass (HMM; >10 kD) and ultrafiltrate (<10 kD) fractions, approximately 2 times more Al was detected in HMM fractions from Al-resistant cultivars than from Al-sensitive cultivars. Dialysis of HMM fractions against water did not release this bound Al;digestion with protease released between 62 and 73% of total Al, with twice as much released from exudates of Al-resistant than of Al-sensitive cultivars. When plants were grown in the presence of 0 to 200 [mu]M Al, saturation of the Al-binding capacity of HMM exudates occurred at 50 [mu]M Al in Al-sensitive cultivars. Saturation was not achieved in resistant cultivars. Differences in exudation of total polypeptides in response to Al stress, enhanced accumulation of specific polypeptides, and the greater association of Al with HMM fractions from Al-resistant cultivars suggest that root exudate polypeptides may play a role in plant response to Al.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bozarth C. S., Mullet J. E., Boyer J. S. Cell wall proteins at low water potentials. Plant Physiol. 1987 Sep;85(1):261–267. doi: 10.1104/pp.85.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dakora F. D., Joseph C. M., Phillips D. A. Alfalfa (Medicago sativa L.) Root Exudates Contain Isoflavonoids in the Presence of Rhizobium meliloti. Plant Physiol. 1993 Mar;101(3):819–824. doi: 10.1104/pp.101.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delhaize E., Ryan P. R., Randall P. J. Aluminum Tolerance in Wheat (Triticum aestivum L.) (II. Aluminum-Stimulated Excretion of Malic Acid from Root Apices). Plant Physiol. 1993 Nov;103(3):695–702. doi: 10.1104/pp.103.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iraki N. M., Bressan R. A., Carpita N. C. Extracellular polysaccharides and proteins of tobacco cell cultures and changes in composition associated with growth-limiting adaptation to water and saline stress. Plant Physiol. 1989 Sep;91(1):54–61. doi: 10.1104/pp.91.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Miyasaka S. C., Buta J. G., Howell R. K., Foy C. D. Mechanism of aluminum tolerance in snapbeans : root exudation of citric Acid. Plant Physiol. 1991 Jul;96(3):737–743. doi: 10.1104/pp.96.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
- Zhao X. J., Sucoff E., Stadelmann E. J. Al and Ca Alteration of Membrane Permeability of Quercus rubra Root Cortex Cells. Plant Physiol. 1987 Jan;83(1):159–162. doi: 10.1104/pp.83.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]