Abstract
Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942 was determined by transmission electron microscopy utilizing immunocytochemistry with cells prepared by freeze-substitution. This preparation procedure maintained cellular morphology and permitted detection of cellular antigens with high sensitivity and low background. Synechococcus sp. PCC7942 is a unicellular cyanobacterium with thylakoids organized in concentric layers toward the periphery of the cell. Cytochrome oxidase was localized almost entirely in the cytoplasmic membrane, whereas a carotenoprotein (P35) was shown to be a cell wall component. The major photosystem II (PSII) proteins (D1, D2 CP43, and CP47) were localized throughout the thylakoids. Proteins of the Cyt b6/f complex were found to have a similar distribution. Thylakoid luminal proteins, such as the Mn-stabilizing protein, were located primarily in the thylakoid, but a small, reproducible fraction was found in the outer compartment. The photosystem I (PSI) reaction center proteins and the ATP synthase proteins were found associated mostly with the outermost thylakoid and with the cytoplasmic membrane. These results indicated that the photosynthetic apparatus is not evenly distributed throughout the thylakoids. Rather, there is a radial asymmetry such that much of the PSI and the ATPase synthase is located in the outermost thylakoid. The relationship of this structure to the photosynthetic mechanism is discussed. It is suggested that the photosystems are separated because of kinetic differences between PSII and PSI, as hypothesized by H.-W. Trissl and C. Wilhelm (Trends Biochem Sci [1993] 18:415-419).
Full Text
The Full Text of this article is available as a PDF (4.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertsson P. A., Andreasson E., Svensson P. The domain organization of the plant thylakoid membrane. FEBS Lett. 1990 Oct 29;273(1-2):36–40. doi: 10.1016/0014-5793(90)81045-p. [DOI] [PubMed] [Google Scholar]
- Allen K. D., Staehelin L. A. Resolution of 16 to 20 chlorophyll-protein complexes using a low ionic strength native green gel system. Anal Biochem. 1991 Apr;194(1):214–222. doi: 10.1016/0003-2697(91)90170-x. [DOI] [PubMed] [Google Scholar]
- Anderson J. M., Andersson B. The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem Sci. 1988 Sep;13(9):351–355. doi: 10.1016/0968-0004(88)90106-5. [DOI] [PubMed] [Google Scholar]
- Blankenship R. E. Origin and early evolution of photosynthesis. Photosynth Res. 1992;33:91–111. [PubMed] [Google Scholar]
- Giddings T. H., Wasmann C., Staehelin L. A. Structure of the Thylakoids and Envelope Membranes of the Cyanelles of Cyanophora paradoxa. Plant Physiol. 1983 Feb;71(2):409–419. doi: 10.1104/pp.71.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giovannoni S. J., Turner S., Olsen G. J., Barns S., Lane D. J., Pace N. R. Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol. 1988 Aug;170(8):3584–3592. doi: 10.1128/jb.170.8.3584-3592.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mustardy L., Cunningham F. X., Jr, Gantt E. Photosynthetic membrane topography: quantitative in situ localization of photosystems I and II. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10021–10025. doi: 10.1073/pnas.89.21.10021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nierzwicki-Bauer S. A., Balkwill D. L., Stevens S. E., Jr Three-dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol. 1983 Sep;97(3):713–722. doi: 10.1083/jcb.97.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olive J., Vallon O. Structural organization of the thylakoid membrane: freeze-fracture and immunocytochemical analysis. J Electron Microsc Tech. 1991 Aug;18(4):360–374. doi: 10.1002/jemt.1060180405. [DOI] [PubMed] [Google Scholar]
- Peschek G. A., Wastyn M., Trnka M., Molitor V., Fry I. V., Packer L. Characterization of the cytochrome c oxidase in isolated and purified plasma membranes from the cyanobacterium Anacystis nidulans. Biochemistry. 1989 Apr 4;28(7):3057–3063. doi: 10.1021/bi00433a048. [DOI] [PubMed] [Google Scholar]
- Reddy K. J., Bullerjahn G. S., Sherman D. M., Sherman L. A. Cloning, nucleotide sequence, and mutagenesis of a gene (irpA) involved in iron-deficient growth of the cyanobacterium Synechococcus sp. strain PCC7942. J Bacteriol. 1988 Oct;170(10):4466–4476. doi: 10.1128/jb.170.10.4466-4476.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy K. J., Masamoto K., Sherman D. M., Sherman L. A. DNA sequence and regulation of the gene (cbpA) encoding the 42-kilodalton cytoplasmic membrane carotenoprotein of the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol. 1989 Jun;171(6):3486–3493. doi: 10.1128/jb.171.6.3486-3493.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman D. M., Sherman L. A. Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans. J Bacteriol. 1983 Oct;156(1):393–401. doi: 10.1128/jb.156.1.393-401.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
- Smith D., Bendall D. S., Howe C. J. Occurrence of a Photosystem II polypeptide in non-photosynthetic membranes of cyanobacteria. Mol Microbiol. 1992 Jul;6(13):1821–1827. doi: 10.1111/j.1365-2958.1992.tb01354.x. [DOI] [PubMed] [Google Scholar]
- Trissl H. W., Wilhelm C. Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci. 1993 Nov;18(11):415–419. doi: 10.1016/0968-0004(93)90136-b. [DOI] [PubMed] [Google Scholar]
- Webb R., Troyan T., Sherman D., Sherman L. A. MapA, an iron-regulated, cytoplasmic membrane protein in the cyanobacterium Synechococcus sp. strain PCC7942. J Bacteriol. 1994 Aug;176(16):4906–4913. doi: 10.1128/jb.176.16.4906-4913.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Tuinen E., Riezman H. Immunolocalization of glyceraldehyde-3-phosphate dehydrogenase, hexokinase, and carboxypeptidase Y in yeast cells at the ultrastructural level. J Histochem Cytochem. 1987 Mar;35(3):327–333. doi: 10.1177/35.3.3546482. [DOI] [PubMed] [Google Scholar]