Abstract
Barley (Hordeum vulgare L.) aleurone layers are known to constitutively acidify their surroundings, primarily by L-malic acid release (J. Mikola, M. Virtanen [1980] Plant Physiol 66: S-142). Here we demonstrate the antagonistic effects of the plant hormones gibberellic acid (GA3) and abscisic acid (ABA) on the regulation of extracellular pH (pHe) of barley aleurone layers. We observed a strong correlation between ABA-induced enhancement of extracellular acidification and an ABA-induced increase in L-malic acid release. In addition, ABA caused an increase in intracellular L-malate level. GA3 caused a slight decrease in intracellular L-malate level and was able to inhibit the ABA-induced increase in L-malate intracellular concentration and release. In addition, this ABA-induced L-malate release could be completely inhibited by GA3. The ABA-induced release of L-malic acid could not account for the total ABA-induced pHe decrease, suggesting the existence of an additional mechanism involved in the regulation of pHe. It has been reported that ABA induces an intracellular pH (pHi) increase, possibly due to the activation of plasma membrane proton pumps (R. Van der Veen, S. Heimovaara-Dijkstra, M. Wang [1992] Plant Physiol 100: 699-705). A pHi increase, such as that caused by ABA, might be correlated with the intracellular L-malate increase as suggested by the pH stat model of D.D. Davies ([1986] Physiol Plant 67: 702-706). We studied if the effects of GA3 on L-malate concentration were correlated with changes in pHi and found that GA3 caused a pHi decrease and that GA3 and ABA could interfere in the regulation of pHi. In addition, we were able to mimic the effect of both hormones on L-malate release by bringing about artifical pHi changes with the weak acid 5,5-dimethyl-2,4-oxazolidinedione and the weak base methylamine. The physiological meaning of the effects of GA3 and ABA on the regulation of both pHe and pHi during grain germination are discussed.
Full Text
The Full Text of this article is available as a PDF (649.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Gehring C. A., Irving H. R., Parish R. W. Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci U S A. 1990 Dec 15;87(24):9645–9649. doi: 10.1073/pnas.87.24.9645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamabata A., García-Maya M., Romero T., Bernal-Lugo I. Kinetics of the Acidification Capacity of Aleurone Layer and Its Effect upon Solubilization of Reserve Substances from Starchy Endosperm of Wheat. Plant Physiol. 1988 Mar;86(3):643–644. doi: 10.1104/pp.86.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedrich R., Marten I. Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells. EMBO J. 1993 Mar;12(3):897–901. doi: 10.1002/j.1460-2075.1993.tb05730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macnicol P. K., Jacobsen J. V. Endosperm acidification and related metabolic changes in the developing barley grain. Plant Physiol. 1992 Mar;98(3):1098–1104. doi: 10.1104/pp.98.3.1098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang M., Van Duijn B., Schram A. W. Abscisic acid induces a cytosolic calcium decrease in barley aleurone protoplasts. FEBS Lett. 1991 Jan 14;278(1):69–74. doi: 10.1016/0014-5793(91)80086-i. [DOI] [PubMed] [Google Scholar]
- van der Veen R., Heimovaara-Dijkstra S., Wang M. Cytosolic alkalinization mediated by abscisic Acid is necessary, but not sufficient, for abscisic Acid-induced gene expression in barley aleurone protoplasts. Plant Physiol. 1992 Oct;100(2):699–705. doi: 10.1104/pp.100.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]