Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Sep;106(1):375–382. doi: 10.1104/pp.106.1.375

Isolation and characterization of cDNAs encoding the vacuolar H(+)-pyrophosphatase of Beta vulgaris.

Y Kim 1, E J Kim 1, P A Rea 1
PMCID: PMC159536  PMID: 7972521

Abstract

The H(+)-pyrophosphatase (V-PPase) of plant vacuolar membranes catalyzes the electrogenic translocation of H+ from the cytosol to vacuole lumen and, in parallel with the vacuolar H(+)-ATPase located in the same membrane, establishes the inside-acid, inside-positive H(+)-electrochemical potential difference responsible for energizing the H(+)-coupled transport of solutes into the vacuole. The results of previous investigations suggest that the gene encoding the substrate-binding subunit of the V-PPase is present in a single copy in the genome of Arabidopsis thaliana (V. Sarafian, Y. Kim, R.J. Poole, P.A. Rea [1992] Proc Natl Acad Sci USA 89: 1775-1779), but it is not known whether the situation in Arabidopsis is typical of most vascular plants. With the objective of assessing the general applicability of this finding and acquiring sequence data for structure-function analyses of the enzyme from Beta vulgaris, we have sought to isolate cDNAs encoding the V-PPase from this organism by screening a Beta cDNA library constructed in lambda ZAP with the Arabidopsis cDNA insert (AVP) encoding the V-PPase. The results of these investigations demonstrate that at least two genes encode the V-PPase in Beta. Restriction and sequence analyses of the cDNAs from Beta reveal two classes, designated BVP1 and BVP2. BVP1 and BVP2 encode closely related but distinct polypeptides with computed masses of 80,550 and 80,000 D, respectively, exhibiting 88% identity with each other and 89% identity with the corresponding polypeptide from Arabidopsis. The nucleotide sequences of BVP1 and BVP2, on the other hand, are 70% identical within their coding regions but less than 28 and 53% identical within their respective 5' and 3' noncoding regions. Southern analyses of Beta genomic DNA confirm that two genes encode the V-PPase, and northern analyses of polyadenylated RNA isolated from a range of tissue types and probed with RNAs transcribed from the 3' noncoding sequences of BVP1 or BVP2 indicate that both genes are expressed in the intact plant. On the basis of these findings and the recent demonstration of then sufficiency of the substrate-binding polypeptide, alone, for all of the known catalytic functions of the V-PPase (E.J. Kim, R.-G. Zhen, P.A. Rea [1994] Proc Natl Acad Sci USA [91:6128-6132]), the two cDNA species isolated from Beta are concluded to encode variant, possibly isoforms, of the enzyme.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baykov A. A., Bakuleva N. P., Rea P. A. Steady-state kinetics of substrate hydrolysis by vacuolar H(+)-pyrophosphatase. A simple three-state model. Eur J Biochem. 1993 Oct 15;217(2):755–762. doi: 10.1111/j.1432-1033.1993.tb18303.x. [DOI] [PubMed] [Google Scholar]
  2. Britten C. J., Zhen R. G., Kim E. J., Rea P. A. Reconstitution of transport function of vacuolar H(+)-translocating inorganic pyrophosphatase. J Biol Chem. 1992 Oct 25;267(30):21850–21855. [PubMed] [Google Scholar]
  3. Coen E. S., Romero J. M., Doyle S., Elliott R., Murphy G., Carpenter R. floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell. 1990 Dec 21;63(6):1311–1322. doi: 10.1016/0092-8674(90)90426-f. [DOI] [PubMed] [Google Scholar]
  4. Cooperman B. S., Baykov A. A., Lahti R. Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends Biochem Sci. 1992 Jul;17(7):262–266. doi: 10.1016/0968-0004(92)90406-y. [DOI] [PubMed] [Google Scholar]
  5. Davies J. M., Poole R. J., Rea P. A., Sanders D. Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11701–11705. doi: 10.1073/pnas.89.24.11701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeWitt N. D., Harper J. F., Sussman M. R. Evidence for a plasma membrane proton pump in phloem cells of higher plants. Plant J. 1991 Jul;1(1):121–128. doi: 10.1111/j.1365-313x.1991.00121.x. [DOI] [PubMed] [Google Scholar]
  7. Harper J. F., Manney L., DeWitt N. D., Yoo M. H., Sussman M. R. The Arabidopsis thaliana plasma membrane H(+)-ATPase multigene family. Genomic sequence and expression of a third isoform. J Biol Chem. 1990 Aug 15;265(23):13601–13608. [PubMed] [Google Scholar]
  8. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Leigh R. A., Branton D. Isolation of Vacuoles from Root Storage Tissue of Beta vulgaris L. Plant Physiol. 1976 Nov;58(5):656–662. doi: 10.1104/pp.58.5.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leigh R. A., Pope A. J., Jennings I. R., Sanders D. Kinetics of the Vacuolar H-Pyrophosphatase : The Roles of Magnesium, Pyrophosphate, and their Complexes as Substrates, Activators, and Inhibitors. Plant Physiol. 1992 Dec;100(4):1698–1705. doi: 10.1104/pp.100.4.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lundin M., Baltscheffsky H., Ronne H. Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. J Biol Chem. 1991 Jul 5;266(19):12168–12172. [PubMed] [Google Scholar]
  12. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maeshima M., Yoshida S. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem. 1989 Nov 25;264(33):20068–20073. [PubMed] [Google Scholar]
  14. Nyrén P., Nore B. F., Strid A. Proton-pumping N,N'-dicyclohexylcarbodiimide-sensitive inorganic pyrophosphate synthase from Rhodospirillum rubrum: purification, characterization, and reconstitution. Biochemistry. 1991 Mar 19;30(11):2883–2887. doi: 10.1021/bi00225a022. [DOI] [PubMed] [Google Scholar]
  15. Rea P. A., Britten C. J., Sarafian V. Common identity of substrate binding subunit of vacuolar h-translocating inorganic pyrophosphatase of higher plant cells. Plant Physiol. 1992 Oct;100(2):723–732. doi: 10.1104/pp.100.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rea P. A., Kim Y., Sarafian V., Poole R. J., Davies J. M., Sanders D. Vacuolar H(+)-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci. 1992 Sep;17(9):348–353. doi: 10.1016/0968-0004(92)90313-x. [DOI] [PubMed] [Google Scholar]
  17. Sarafian V., Kim Y., Poole R. J., Rea P. A. Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1775–1779. doi: 10.1073/pnas.89.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sarafian V., Poole R. J. Purification of an h-translocating inorganic pyrophosphatase from vacuole membranes of red beet. Plant Physiol. 1989 Sep;91(1):34–38. doi: 10.1104/pp.91.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES