Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Oct;106(2):447–458. doi: 10.1104/pp.106.2.447

Seed-specific gene activation mediated by the Cre/lox site-specific recombination system.

J T Odell 1, J L Hoopes 1, W Vermerris 1
PMCID: PMC159549  PMID: 7991679

Abstract

The Cre/lox site-specific recombination system was used to activate a transgene in a tissue-specific manner. Cre-mediated activation of a beta-glucuronidase marker gene, by removal of a lox-bounded blocking fragment, allowed the visualization of the activation process. By using seed-specific promoters, the timing and efficiency of gene activation could be followed within the developing tobacco (Nicotiana tabacum) embryo. To serve as a basis for analyzing gene expression after-Cre-mediated activation, the timing and patterns of expression of the promoters of the genes encoding French bean (Phaseolus vulgaris) beta-phaseolin and the alpha' subunit of soybean (Glycine max) beta-conglycinin, as well as the cauliflower mosaic virus 35S promoter, were studied in developing transgenic tobacco embryos using the same visual marker. These seed-specific promoters were expressed earlier than anticipated. The 35S promoter was expressed earlier than the seed-specific promoters, but not in globular-stage embryos. Cre-mediated gene activation occurred approximately 1 d after promoter activation, based on developmental staging, and spread progressively throughout the embryo. The timing of gene activation was varied by altering Cre expression. Efficient Cre expression ultimately directed gene activation throughout the model tissue, whereas inefficient Cre expression resulted in mosaic tissue. Limited gene activation provides a system for cell lineage and developmental analyses.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assaad F. F., Tucker K. L., Signer E. R. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol Biol. 1993 Sep;22(6):1067–1085. doi: 10.1007/BF00028978. [DOI] [PubMed] [Google Scholar]
  2. Bayley C. C., Morgan M., Dale E. C., Ow D. W. Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. Plant Mol Biol. 1992 Jan;18(2):353–361. doi: 10.1007/BF00034962. [DOI] [PubMed] [Google Scholar]
  3. Beachy R. N., Chen Z. L., Horsch R. B., Rogers S. G., Hoffmann N. J., Fraley R. T. Accumulation and assembly of soybean beta-conglycinin in seeds of transformed petunia plants. EMBO J. 1985 Dec 1;4(12):3047–3053. doi: 10.1002/j.1460-2075.1985.tb04044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benfey P. N., Ren L., Chua N. H. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 1990 Jun;9(6):1677–1684. doi: 10.1002/j.1460-2075.1990.tb08291.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bustos M. M., Begum D., Kalkan F. A., Battraw M. J., Hall T. C. Positive and negative cis-acting DNA domains are required for spatial and temporal regulation of gene expression by a seed storage protein promoter. EMBO J. 1991 Jun;10(6):1469–1479. doi: 10.1002/j.1460-2075.1991.tb07667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bustos M. M., Guiltinan M. J., Jordano J., Begum D., Kalkan F. A., Hall T. C. Regulation of beta-glucuronidase expression in transgenic tobacco plants by an A/T-rich, cis-acting sequence found upstream of a French bean beta-phaseolin gene. Plant Cell. 1989 Sep;1(9):839–853. doi: 10.1105/tpc.1.9.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chamberland S., Daigle N., Bernier F. The legumin boxes and the 3' part of a soybean beta-conglycinin promoter are involved in seed gene expression in transgenic tobacco plants. Plant Mol Biol. 1992 Sep;19(6):937–949. doi: 10.1007/BF00040526. [DOI] [PubMed] [Google Scholar]
  8. Dale E. C., Ow D. W. Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10558–10562. doi: 10.1073/pnas.88.23.10558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doyle J. J., Schuler M. A., Godette W. D., Zenger V., Beachy R. N., Slightom J. L. The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris. Structural homologies of genes and proteins. J Biol Chem. 1986 Jul 15;261(20):9228–9238. [PubMed] [Google Scholar]
  10. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kilby N. J., Leyser H. M., Furner I. J. Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol Biol. 1992 Oct;20(1):103–112. doi: 10.1007/BF00029153. [DOI] [PubMed] [Google Scholar]
  12. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  13. Lam E., Benfey P. N., Gilmartin P. M., Fang R. X., Chua N. H. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7890–7894. doi: 10.1073/pnas.86.20.7890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lassner M. W., Jones A., Daubert S., Comai L. Targeting of T7 RNA polymerase to tobacco nuclei mediated by an SV40 nuclear location signal. Plant Mol Biol. 1991 Aug;17(2):229–234. doi: 10.1007/BF00039497. [DOI] [PubMed] [Google Scholar]
  15. Linn F., Heidmann I., Saedler H., Meyer P. Epigenetic changes in the expression of the maize A1 gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol Gen Genet. 1990 Jul;222(2-3):329–336. doi: 10.1007/BF00633837. [DOI] [PubMed] [Google Scholar]
  16. Lloyd A. M., Davis R. W. Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Mol Gen Genet. 1994 Mar;242(6):653–657. doi: 10.1007/BF00283419. [DOI] [PubMed] [Google Scholar]
  17. Lyznik L. A., Mitchell J. C., Hirayama L., Hodges T. K. Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic Acids Res. 1993 Feb 25;21(4):969–975. doi: 10.1093/nar/21.4.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mersereau M., Pazour G. J., Das A. Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene. 1990 May 31;90(1):149–151. doi: 10.1016/0378-1119(90)90452-w. [DOI] [PubMed] [Google Scholar]
  19. Odell J. T., Nagy F., Chua N. H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. 1985 Feb 28-Mar 6Nature. 313(6005):810–812. doi: 10.1038/313810a0. [DOI] [PubMed] [Google Scholar]
  20. Onouchi H., Yokoi K., Machida C., Matsuzaki H., Oshima Y., Matsuoka K., Nakamura K., Machida Y. Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acids Res. 1991 Dec 11;19(23):6373–6378. doi: 10.1093/nar/19.23.6373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Perez-Grau L., Goldberg R. B. Soybean Seed Protein Genes Are Regulated Spatially during Embryogenesis. Plant Cell. 1989 Nov;1(11):1095–1109. doi: 10.1105/tpc.1.11.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Plant G. W., Harvey A. R., Chirila T. V. Axonal growth within poly (2-hydroxyethyl methacrylate) sponges infiltrated with Schwann cells and implanted into the lesioned rat optic tract. Brain Res. 1995 Feb 6;671(1):119–130. doi: 10.1016/0006-8993(94)01312-6. [DOI] [PubMed] [Google Scholar]
  23. Qin M., Bayley C., Stockton T., Ow D. W. Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1706–1710. doi: 10.1073/pnas.91.5.1706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Russell S. H., Hoopes J. L., Odell J. T. Directed excision of a transgene from the plant genome. Mol Gen Genet. 1992 Jul;234(1):49–59. doi: 10.1007/BF00272344. [DOI] [PubMed] [Google Scholar]
  25. Sauer B., Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5166–5170. doi: 10.1073/pnas.85.14.5166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scheper R. J., Broxterman H. J., Scheffer G. L., Kaaijk P., Dalton W. S., van Heijningen T. H., van Kalken C. K., Slovak M. L., de Vries E. G., van der Valk P. Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res. 1993 Apr 1;53(7):1475–1479. [PubMed] [Google Scholar]
  27. Scofield S. R., English J. J., Jones J. D. High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Cell. 1993 Nov 5;75(3):507–517. doi: 10.1016/0092-8674(93)90385-4. [DOI] [PubMed] [Google Scholar]
  28. Sengupta-Gopalan C., Reichert N. A., Barker R. F., Hall T. C., Kemp J. D. Developmentally regulated expression of the bean beta-phaseolin gene in tobacco seed. Proc Natl Acad Sci U S A. 1985 May;82(10):3320–3324. doi: 10.1073/pnas.82.10.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shure M., Wessler S., Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell. 1983 Nov;35(1):225–233. doi: 10.1016/0092-8674(83)90225-8. [DOI] [PubMed] [Google Scholar]
  30. Walling L., Drews G. N., Goldberg R. B. Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2123–2127. doi: 10.1073/pnas.83.7.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES