Abstract
DNA microarrays were used to probe the transcriptional response of Escherichia coli to N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Fifty-five transcripts were significantly up-regulated, including all of the genes that are regulated by Zur and many that are regulated by Fur. In the same TPEN-treated cells, 46 transcripts were significantly down-regulated.
The transcriptional response of Escherichia coli to elevated levels of metal ions such as Zn(II), Cd(II), Co(II), Ni(II), and Fe(II) has been probed in an effort to understand the mechanisms by which the homeostatic levels of these metal ions are maintained (10, 15, 51, 95, 96). In contrast, very few studies have probed the global response of E. coli to low levels of metal ions, presumably due to the difficulty of sufficiently depleting the growth medium of metal ions. In this study, cDNA microarrays were used to probe the transcriptional response of E. coli to stress by N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). TPEN (58, 81), a cell-permeative, divalent metal chelator, is often called “Zn(II) specific” (17, 33, 38, 48, 59, 64, 71, 79, 80, 83, 88). Our data show significant changes in the transcription of several genes in cells stressed with TPEN.
To identify genes that are differentially expressed in response to TPEN, E. coli BL21(DE3) cells were grown in minimal medium (76) until the cultures reached mid-log phase. TPEN was introduced, and the cells were cultured for 5 h; this time was chosen so that the results would correspond to previous transcriptional response studies with excess Zn(II) (51). The cultures containing 5 μM TPEN were analyzed with DNA microarrays (E. coli K12 V2 array slides from MWG-BIOTECH), and the results were compared to those from E. coli cells grown in minimal medium containing no TPEN. A minimum of six slides was used for each experiment (three slides with one combination of Cy3 and Cy5 dyes and three slides with swapped dyes). Fifty-five transcripts were significantly up-regulated (twofold) (Table 1). Four genes (ykgM, znuA, znuC, and yodA) that are regulated by Zur, the Zn(II) uptake regulator (30), exhibited significant increases in expression. The remaining Zur-regulated transcript, znuB, was also up-regulated; however, this transcript did not meet our filtering criteria: (i) P values of ≤0.5, (ii) ≥2-fold changes in expression, and (iii) consistent data in all six slides. The expression of zntA, which is regulated by ZntR and encodes the high-affinity Zn(II) exporter in E. coli (7, 14, 78), was unchanged in E. coli cultures stressed with TPEN (see the complete set of DNA array data).
TABLE 1.
Genes up-regulated in E. coli cells stressed with TPEN
Grouping | IDa | Gene | Increase (fold) | P value | Description | Reference |
---|---|---|---|---|---|---|
Zur regulated | B0296 | ykgM | 23 | 5.5E-04 | Ribosomal protein; L31 paralog | 70 |
B1973 | yodA | 21 | 2.8E-03 | Cd(II) induced; putative Zn(II) transporter | 21, 75 | |
B1857 | znuA | 7.6 | 1.5E-03 | Periplasmic component of Zn(II)-specific ZnuABC transporter | 73 | |
B1858 | znuC | 2.2 | 1.1E-02 | ATPase of ZnuABC | 73 | |
Fur regulated | B2673 | nrdH | 12 | 1.9E-04 | Glutaredoxin-like protein | 39 |
B2674 | nrdI | 12 | 8.8E-03 | Stimulates NrdH | 39 | |
B0595 | entB | 9.7 | 2.4E-05 | 2,3-Dihydro-2,3-dihydroxybenzoate synthetase | 26 | |
B0596 | entA | 8.7 | 6.1E-03 | 2,3-Dihydro-2,3-dihydroxybenzoate dehydrogenase | 91 | |
B0583 | entD | 7.2 | 1.0E-04 | Enterochelin synthetase, component D | 26 | |
B3006 | exbB | 5.8 | 4.9E-04 | Uptake of enterochelin; TonB-dependent uptake of b colicins | 34 | |
B3005 | exbD | 5.3 | 1.3E-03 | Enterochelin synthetase, component d | 34 | |
B0594 | entE | 5.1 | 1.6E-02 | 2,3-Dihydroxybenzoate-AMP ligase | 26 | |
B1683 | sufB | 5.1 | 3.6E-03 | Component of SufBCD cysteine desulfurase activator complex | 69 | |
B1682 | sufC | 5.1 | 4.2E-03 | ATP-binding component of SufBCD cysteine desulfurase activator complex | 69 | |
B0151 | fhuC | 5.1 | 1.1E-03 | ATP-binding component of hydroxymate-dependent iron transport | 16 | |
B4292 | fecR | 4.9 | 2.4E-03 | Regulator for fec operon, periplasmic | 22 | |
B4293 | fecI | 4.8 | 4.5E-03 | Probable RNA polymerase sigma factor | 4 | |
B0585 | fes | 4.5 | 1.9E-02 | Enterochelin esterase | 13 | |
B1102 | fhuE | 4.4 | 3.4E-03 | Outer membrane receptor for ferric iron uptake | 11 | |
B0150 | fhuA | 4.3 | 1.9E-03 | Outer membrane protein receptor for ferrichrome, colicin m | 24 | |
B4367 | fhuF | 2.10 | 4.7E-03 | Ferrioxamine B reductase | 62 | |
B1679 | sufE | 2.01 | 1.4E-03 | Cysteine desulfurase | 55 | |
B1252 | tonB | 3.9 | 5.2E-04 | TonB | 45 | |
B1681 | ynhC | 3.9 | 3.5E-03 | Component of SufBCD cysteine desulfurase activator complex | 69 | |
B1680 | sufS | 3.7 | 6.7E-03 | l-Selenocysteine lyase | 72 | |
B2676 | nrdF | 3.1 | 8.7E-04 | Subunit of ribonucleoside-diphosphate reductase II | 46 | |
B3908 | sodA | 3.0 | 2.0E-02 | Mn superoxide dismutase | 36 | |
B4290 | fecB | 3.0 | 4.4E-02 | Periplasmic component of iron dicitrate ABC transporter | 31 | |
B2155 | cirA | 2.9 | 3.3E-03 | Outer membrane receptor for colicin I receptor | 12 | |
B0153 | fhuB | 2.9 | 5.0E-02 | Component of Fe(III) hydroxamate ABC transporter | 16 | |
B0592 | fepB | 2.7 | 2.2E-02 | Fe(III) enterobactin ABC transporter | 84 | |
B1132 | ycfC | 2.6 | 2.1E-02 | Membrane protein in operon with purB | 28 | |
B0586 | entF | 2.4 | 2.5E-02 | Apo-serine activating enzyme | 26 | |
SoxRS regulated | B1611 | fumC | 3.8 | 2.6E-02 | Class II fumarase | 89 |
B2962 | yggX | 3.2 | 6.4E-03 | Protects Fe-S clusters from oxidation | 67 | |
B2963 | mltC | 2.6 | 4.6E-05 | Component of lytic murein transglycosylase C | 6 | |
B2237 | inaA | 2.2 | 3.1E-03 | pH-inducible protein involved in stress response | 93 | |
B3924 | fpr | 2.1 | 4.8E-02 | Flavodoxin NADP+ reductase | 9 | |
Other stress related | B0126 | yadF | 3.7 | 6.9E-03 | Carbonic anhydrase | 60 |
B1053 | yceE | 2.5 | 1.3E-03 | Drug resistance protein | 65 | |
B0313 | betI | 2.4 | 5.9E-03 | Transcription repressor of bet genes | 49 | |
B1629 | rsxC | 2.1 | 2.9E-02 | Component of SoxR reducing complex | 47 | |
B4062 | soxS | 2.1 | 7.3E-03 | Superoxide response regulon | 52 | |
B1307 | pspD | 2.0 | 3.4E-02 | Phage shock protein | 61 | |
Anabolic processes | B1264 | trpE | 5.3 | 3.7E-02 | Anthranilate synthase component I | 20 |
B3161 | mtr | 2.9 | 7.6E-04 | Trp transport protein | 32 | |
B1265 | trpL | 2.7 | 3.1E-02 | Trp operon leader peptide | 43 | |
B2678 | proW | 2.6 | 2.4E-02 | Pro and Gly betaine transporter | 5 | |
B0311 | betA | 2.6 | 3.1E-03 | Choline dehydrogenase | 77 | |
B4245 | pyrB | 2.6 | 2.1E-02 | Aspartate transcarbamoylase | 41 | |
B2028 | ugd | 2.4 | 3.1E-03 | UDP-glucose-6-dehydrogenase | 85 | |
B1261 | trpB | 2.3 | 5.0E-02 | Trp synthase β | 44 | |
B3409 | feoB | 2.3 | 1.7E-02 | Fe(II) transport protein | 40 | |
B1981 | shiA | 2.3 | 4.7E-02 | Shikimate transporter | 92 | |
B0931 | pncB | 2.0 | 7.3E-03 | Nicotinate phosphoribosyltransferase | 94 |
ID, identifier.
Twenty-nine of the up-regulated genes from TPEN-supplemented cultures are transcriptionally regulated by Fur, the iron uptake regulator (Table 1), and several are involved in Fe transport. The genes (entB, entA, entD, entE, and fes) which encode proteins involved with enterobactin synthesis and uptake (26, 29, 54) and the fec genes (fecR and fecI), which encode proteins involved in Fe import (23), were significantly up-regulated. Several other genes (fhuA, exbB, exbD, fhuD, fhuC, and fhuF) associated with ferrichrome transport in E. coli were also up-regulated (19, 56, 62).
Forty-six transcripts were significantly down-regulated in E. coli cells stressed with TPEN (Table 2). Two operons in E. coli, flgBCDEFGHIJKL and flgAMN, possess genes that encode proteins involved in flagellar biosynthesis (8). Some of these motility-related genes, namely, flgB, fliM, and motB, were previously reported as being up-regulated in E. coli cells stressed with excess Zn(II) (51). In addition, the expression of flagellar biosynthetic proteins in E. coli is affected by the concentration of copper, possibly exerting its effect via the OmpR or H-NS transcriptional regulators (42). All of the genes in the cus and cue systems, which confer copper tolerance to E. coli (68), were also down-regulated, although cusA and copA were filtered out of the data shown in Table 2. Previous studies have demonstrated that the expression levels of the cus and cue genes are dependent on aerobic/anaerobic conditions as well as on the levels of copper in the periplasm/cytoplasm (68). The expression levels of cytoplasmic ferritin (3) were also significantly down-regulated in TPEN-treated cells.
TABLE 2.
Genes down-regulated in E. coli cells stressed with TPEN
Grouping | IDb | Gene | Decrease (fold) | P value | Descriptiona | Reference |
---|---|---|---|---|---|---|
Flagellar biosynthesis | B1074 | flgC | 7.9 | 3.1E-05 | Cell-proximal portion of basal-body rod | 8 |
B1075 | flgD | 7.5 | 3.6E-04 | Initiator of hook assembly | 8 | |
B1078 | flgG | 4.9 | 1.2E-05 | Cell-distal portion of basal-body rod | 8 | |
B1080 | flgI | 4.3 | 3.3E-04 | p ring of flagellar basal body | 8 | |
B1079 | flgH | 4.0 | 8.7E-03 | Outer membrane ring protein | 8 | |
B1077 | flgF | 3.9 | 5.4E-05 | Cell-proximal portion of basal-body rod | 8 | |
B1081 | flgJ | 3.9 | 2.8E-03 | Flagellar protein | 8 | |
B1073 | flgB | 3.8 | 3.8E-04 | Cell proximal portion of basal-body rod | 8 | |
B1072 | flgA | 3.4 | 4.7E-02 | Assembly of basal-body p ring | 8 | |
B1082 | flgK | 3.1 | 2.6E-02 | Hook filament junction protein | 8 | |
B1071 | flgM | 2.3 | 3.6E-03 | Anti-flia factor | 8 | |
Sugar metabolism | B2094 | gatA | 6.4 | 5.9E-03 | Enzyme IIa of PTS | 66 |
B2095 | gatZ | 5.3 | 5.6E-03 | Putative tagatose 6-phosphate kinase | 66 | |
B2092 | gatC | 4.9 | 2.7E-02 | Enzyme IIc of PTS | 66 | |
B2091 | gatD | 4.7 | 2.4E-03 | Galactitol-1-phosphate dehydrogenase | 66 | |
B2167 | fruA | 4.0 | 2.2E-03 | Fructose specific transporter | 66 | |
B2093 | gatB | 3.7 | 1.3E-02 | Enzyme IIb of PTS | 66 | |
B2169 | fruB | 3.5 | 3.1E-03 | Fructose specific IIa component | 66 | |
B2168 | fruK | 3.2 | 2.8E-02 | Fructose 1-phosphate kinase | 66 | |
B2096 | gatY | 2.6 | 1.7E-02 | Tagatose-bisphosphate aldolase | 66 | |
B4034 | malE | 2.4 | 8.1E-03 | Maltose binding protein | 66 | |
B3417 | malP | 2.3 | 5.0E-03 | Maltodextrin phosphorylase | 66 | |
B1198 | ycgC | 2.3 | 6.5E-03 | Dihydroxyacetone kinase M | 66 | |
B1817 | manX | 2.1 | 1.5E-03 | Mannose transporter | 66 | |
Fe and Cu | B1905 | ftnA | 5.3 | 3.8E-04 | Cytoplasmic ferritin | 82 |
metabolism | B0123 | yacK | 2.5 | 2.7E-03 | CueO, Cu(I) oxidase | 27 |
B0573 | ylcC | 2.5 | 2.7E-03 | CusF, copper efflux | 27 | |
B0572 | ylcB | 2.4 | 2.0E-02 | CusC, copper efflux | 27 | |
B0574 | ylcD | 2.2 | 1.4E-02 | CusB, copper efflux | 27 | |
Stress | B1656 | sodB | 3.7 | 2.0E-03 | Fe superoxide dismutase | 36 |
B1379 | hslJ | 2.3 | 7.4E-03 | Heat shock protein | 53 | |
B3687 | ibpA | 2.1 | 4.7E-03 | Heat shock protein | 50 | |
Metabolic proteins | B3936 | rpmE | 3.4 | 2.2E-02 | L31 ribosomal protein | 63 |
B2142 | yohK | 2.5 | 3.0E-02 | Serotonin transporter | 43 | |
B2286 | nuoC | 2.5 | 1.3E-02 | Component of NADH dehydrogenase | 25 | |
B0972 | hyaA | 2.5 | 4.8E-02 | Hydrogenase small subunit | 37 | |
B4116 | adiY | 2.4 | 2.8E-02 | Transcription activator of Arg decarboxylase | 86 | |
B0411 | tsx | 2.3 | 2.8E-2 | Nucleoside channel | 57 | |
B1380 | ldhA | 2.3 | 1.1E-02 | Lactate dehydrogenase | 18 | |
B3209 | yhbL | 2.3 | 1.8E-02 | Isoprenoid biosynthesis protein | 35 | |
B0651 | ybeK | 2.3 | 1.9E-2 | Ribonucleoside hydrolase | 74 | |
B1245 | oppC | 2.2 | 7.2E-3 | ABC transporter for peptides | 87 | |
B0872 | hcr | 2.2 | 4.0E-02 | NADH oxidoreductase | 90 | |
B1241 | adhE | 2.0 | 2.1E-03 | Acetaldehyde dehydrogenase and Fe-dependent alcohol dehydrogenase | 18 | |
B1246 | oppD | 2.0 | 3.8E-02 | ABC transporter for peptides | 87 | |
B2284 | nuoF | 2.0 | 7.0E-03 | NADH dehydrogenase | 25 |
PTS, phosphotransferase system.
ID, identifier.
To validate the microarray data, two representative genes were selected for real-time PCR and assayed for the level of mRNA by a two-step, real-time PCR technique. The genes yodA and pdxH, which were up-regulated (21-fold) and exhibited no change (1.1-fold), respectively, were analyzed with real-time PCR. Real-time PCR results were as follows: yodA up-regulated, 17 ± 1; pdxH up-regulated, 1.1 ± 0.1. In order to probe whether the changes observed in cells grown in the presence of TPEN were due to the chelator, RT-PCR was used to probe for the expression levels of yodA in E. coli cells grown in minimal medium containing 5 μM TPEN and 30 μM Zn(II). There was no change in transcript levels of yodA when E. coli was cultured in this medium.
Despite the fact that TPEN is often referred to as a Zn(II)-specific chelator (17, 33, 38, 48, 59, 64, 71, 79, 80, 83, 88), the analyses of our microarray data suggest that the levels of other metal ions may have been affected by the presence of TPEN. TPEN has been reported to bind Cd(II) (Kd = 4.7 × 10−17), Co(II) (Kd = 2.6 × 10−17), Ni(II) (Kd = 2.8 × 10−22), and Cu(II) (Kd = 2.9 × 10−21) more tightly than it binds Zn(II) (2). In addition, TPEN forms stable complexes with Fe(II) (Kd = 2.5 × 10−15) (2). Since TPEN forms much tighter complexes with Cu(II), it is likely that the down-regulation of the copper homeostasis/export transcripts, cueO, copA, cusA, cusB, cusC, and cusF, is due to low levels of intracellular copper. Twenty-nine Fur-regulated transcripts were up-regulated. Despite the fact that Fe(II) binds 1 order of magnitude less tightly to TPEN than Zn(II) (2), it is possible that TPEN lowered the intracellular concentrations of Fe(II), resulting in the transcription of Fur-regulated iron uptake proteins. The reduction in intracellular concentrations of Fe(II) could be due to direct chelation by TPEN or by oxidation of intracellular Fe(II) to Fe(III). The fact that several other SoxRS-regulated transcripts were up-regulated in cultures stressed with TPEN (Table 1) suggests oxidative stress in these cells (97). It is also possible that the reduction of intracellular Zn(II) caused by the presence of TPEN resulted in an improperly folded Fur, which requires one Zn(II) for proper structure/function (1).
Taken together, these results strongly suggest that the intracellular levels of several metal ions in E. coli can be affected by TPEN, which indicates that caution should be exercised when TPEN is used in experiments to control intracellular concentrations of Zn(II) in cells.
Microarray data accession number.
The microarray data have been loaded into the Gene Expression Omnibus (GEO) with the accession number GSE5356 (www.ncbi.nlm.nih.gov/geo).
Acknowledgments
We thank Paul Christopher Wood and Maria Lia Molas from the Center for Bioinformatics and Functional Genomics (CBFG) for helping with the microarray scanner and real-time PCR experiments. We are also grateful to Herbert Auer, Director of the Affymetrix Core, Columbus Children's Research Institute, for training and assistance in the analysis of cDNA microarray data.
We acknowledge Miami University (Committee on Faculty Research and OARS) and the National Institutes of Health (GM079411) for funding this work.
REFERENCES
- 1.Althaus, E. W., C. E. Outten, K. E. Olson, H. Cao, and T. V. O'Halloran. 1999. The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry 38:6559-6569. [DOI] [PubMed] [Google Scholar]
- 2.Anderegg, G., E. Hubmann, N. G. Podder, and F. Wenk. 1977. Pyridinderivate als Komplexbildner. XI1. Die Thermodynamik der Metallkomplexbildung mit Bis-, Tris-, and Tetrakis[(2-pyridyl)methyl]-aminen. Helv. Chem. Acta 60:123-140. [Google Scholar]
- 3.Andrews, S. C. 1998. Iron storage in bacteria. Adv. Microb. Physiol. 40:281-351. [DOI] [PubMed] [Google Scholar]
- 4.Angerer, A., S. Enz, M. Ochs, and V. Braun. 1995. Transcriptional regulation of ferric citrate transport in Escherichia coli K-12. FecI belongs to a new subfamily of sigma 70-type factors that respond to extracytoplasmic stimuli. Mol. Microbiol. 18:163-174. [DOI] [PubMed] [Google Scholar]
- 5.Barron, A., J. U. Jung, and M. Villarejo. 1987. Purification and characterization of a glycine betaine binding protein from Escherichia coli. J. Biol. Chem. 262:11841-11846. [PubMed] [Google Scholar]
- 6.Bateman, A., and M. Bycroft. 2000. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J. Mol. Biol. 299:1113-1119. [DOI] [PubMed] [Google Scholar]
- 7.Beard, S. J., R. Hashim, J. Membrillo-Hernandez, M. N. Hughes, and R. K. Poole. 1997. Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol. Microbiol. 25:883-891. [DOI] [PubMed] [Google Scholar]
- 8.Berg, H. C. 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72:19-54. [DOI] [PubMed] [Google Scholar]
- 9.Bianchi, V., P. Reichard, R. Eliasson, E. Pontis, M. Krook, H. Jornvall, and E. Haggard-Ljungquist. 1993. Escherichia coli ferredoxin NADP+ reductase: activation of E. coli anaerobic ribonucleotide reduction, cloning of the gene (fpr), and overexpression of the protein. J. Bacteriol. 175:1590-1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Binet, M. R., and R. K. Poole. 2000. Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. FEBS Lett. 473:67-70. [DOI] [PubMed] [Google Scholar]
- 11.Bitter, W., I. S. van Leeuwen, J. de Boer, H. W. Zomer, M. C. Koster, P. J. Weisbeek, and J. Tommaseen. 1994. Localization of functional domains in the Escherichia coli coprogen receptor FhuE and the Pseudomonas putida ferric-pseudobactin 358 receptor PupA. Mol. Gen. Genet. 245:694-703. [DOI] [PubMed] [Google Scholar]
- 12.Braun, V., S. I. Patzer, and K. Hantke. 2002. Ton-dependent colicins and microcins: modular design and evolution. Biochimie 84:365-380. [DOI] [PubMed] [Google Scholar]
- 13.Brickman, T., and M. McIntosh. 1992. Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J. Biol. Chem. 267:12350-12355. [PubMed] [Google Scholar]
- 14.Brocklehurst, K. R., J. L. Hobman, B. Lawley, L. Blank, S. J. Marshall, N. L. Brown, and A. P. Morby. 1999. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31:893-902. [DOI] [PubMed] [Google Scholar]
- 15.Brocklehurst, K. R., and A. P. Morby. 2000. Metal-ion tolerance in Escherichia coli: analysis of transcriptional profiles by gene-array technology. Microbiology 146:2277-2282. [DOI] [PubMed] [Google Scholar]
- 16.Burkhardt, R., and V. Braun. 1987. Nucleotide sequence of the fhuC and fhuD genes involved in iron(III) hydroxamate transport: domains in FhuC homologous to ATP-binding proteins. Mol. Gen. Genet. 209:49-55. [DOI] [PubMed] [Google Scholar]
- 17.Chimienti, F., M. Seve, S. Richard, J. Mathieu, and A. Favier. 2001. Role of cellular zinc in programmed cell death: temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem. Pharmacol. 62:51-62. [DOI] [PubMed] [Google Scholar]
- 18.Clark, D. P. 1989. The fermentation pathways of Escherichia coli. FEMS Microbiol. Rev. 5:223-234. [DOI] [PubMed] [Google Scholar]
- 19.Coulton, J. W., P. Mason, and D. D. Allatt. 1987. fhuC and fhuD genes for iron(III)-ferrichrome transport into Escherichia coli K-12. J. Bacteriol. 169:3844-3849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Crawford, I. P. 1989. Evolution of a biosynthetic pathway: the tryptophan paradigm. Annu. Rev. Microbiol. 43:567-600. [DOI] [PubMed] [Google Scholar]
- 21.David, G., K. Blondeau, M. Schiltz, S. Penel, and A. Lewit-Bentley. 2003. YodA from Escherichia coli is a metal-binding, lipocalin-like protein. J. Biol. Chem. 278:43728-43735. [DOI] [PubMed] [Google Scholar]
- 22.Enz, S., H. Brand, C. Orellana, S. Mahren, and V. Braun. 2003. Sites of interaction between the FecA and FecR signal transduction proteins of ferric citrate transport in Escherichia coli K-12. J. Bacteriol. 185:3745-3752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Enz, S., S. Mahren, C. Menzel, and V. Braun. 2003. Analysis of the ferric citrate transport gene promoter of Escherichia coli. J. Bacteriol. 185:2387-2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Ferguson, A. D., E. Hofmann, J. W. Coulton, K. Diederichs, and W. Welte. 1998. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215-2220. [DOI] [PubMed] [Google Scholar]
- 25.Friedrich, T. 1998. The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim. Biophys. Acta 1364:134-146. [DOI] [PubMed] [Google Scholar]
- 26.Gehring, A. M., I. Mori, and C. T. Walsh. 1998. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37:2648-2659. [DOI] [PubMed] [Google Scholar]
- 27.Grass, G., and C. Rensing. 2001. Genes involved in copper homeostasis in Escherichia coli. J. Bacteriol. 183:2145-2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Green, S. M., T. Malik, I. G. Giles, and W. T. Drabble. 1996. The purB gene of Escherichia coli K-12 is located in an operon. Microbiology 142:3219-3230. [DOI] [PubMed] [Google Scholar]
- 29.Hantash, F. M., M. Ammerlaan, and C. F. Earhart. 1997. Enterobactin synthase polypeptides of Escherichia coli are present in an osmotic-shock-sensitive cytoplasmic locality. Microbiology 143:147-156. [DOI] [PubMed] [Google Scholar]
- 30.Hantke, K. 2005. Bacterial zinc uptake and regulators. Curr. Opin. Microbiol. 8:196-202. [DOI] [PubMed] [Google Scholar]
- 31.Harle, C., I. Kim, A. Angerer, and V. Braun. 1995. Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface. EMBO J. 14:1430-1438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Heatwole, V. M., and R. L. Somerville. 1991. The tryptophan-specific permease gene, mtr, is differentially regulated by the tryptophan and tyrosine repressors in Escherichia coli K-12. J. Bacteriol. 173:3601-3604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Hegeman, C. E., M. L. Hayes, and M. R. Hanson. 2005. Substrate and cofactor requirements for RNA editing of chloroplast transcripts in Arabidopsis in vitro. Plant J. 42:124-132. [DOI] [PubMed] [Google Scholar]
- 34.Held, K. G., and K. Postle. 2002. ExbB and ExbD do not function independently in TonB-dependent energy transduction. J. Bacteriol. 184:5170-5173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Hemmi, H., S. Ohnuma, K. Nagaoka, and T. Nishino. 1998. Identification of genes affecting lycopene formation in Escherichia coli transformed with carotenoid biosynthetic genes: candidates for early genes in isoprenoid biosynthesis. J. Biochem. (Tokyo) 123:1088-1096. [DOI] [PubMed] [Google Scholar]
- 36.Hopkin, K., M. Papazian, and H. Steinman. 1992. Functional differences between manganese and iron superoxide dismutases in Escherichia coli K-12. J. Biol. Chem. 267:24253-24258. [PubMed] [Google Scholar]
- 37.Hube, M., M. Blokesch, and A. Bock. 2002. Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J. Bacteriol. 184:3879-3885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Hyun, H. J., J. H. Sohn, D. W. Ha, Y. H. Ahn, J. Y. Koh, and Y. H. Yoon. 2001. Depletion of intracellular zinc and copper with TPEN results in apoptosis of cultured human retinal pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 42:460-469. [PubMed] [Google Scholar]
- 39.Jordan, A., F. Aslund, E. Pontis, P. Reichard, and A. Holmgren. 1997. Characterization of Escherichia coli NrdH. A glutaredoxin-like protein with a thioredoxin-like activity profile. J. Biol. Chem. 272:18044-18050. [DOI] [PubMed] [Google Scholar]
- 40.Kammler, M., C. Schon, and K. Hantke. 1993. Characterization of the ferrous iron uptake system of Escherichia coli. J. Bacteriol. 175:6212-6219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Ke, H. M., R. B. Nonzatko, and W. N. Lipscomb. 1984. Structure of unligated aspartate carbamoyltransferase of Escherichia coli at 2.6 Å resolution. Proc. Natl. Acad. Sci. USA 81:4037-4040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Kershaw, C. J., N. L. Brown, C. Constantinidou, M. D. Patel, and J. L. Hobman. 2005. The expression profile of Escherichia coli K-12 in response to minimal, optimal, and excess copper conditions. Microbiology 151:1187-1198. [DOI] [PubMed] [Google Scholar]
- 43.Keseler, I. M., J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T. Paulsen, M. Peralta-Gil, and P. D. Karp. 2005. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. 33:D334-D337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Kirschner, K., A. N. Lane, and A. W. Strasser. 1991. Reciprocal communication between the lyase and synthase active sites of the tryptophan synthase bienzyme complex. Biochemistry 30:472-478. [DOI] [PubMed] [Google Scholar]
- 45.Kodding, J., F. Killig, P. Polzer, S. P. Howard, K. Diederichs, and W. Welte. 2004. Crystal structure of a 92-residue C-terminal fragment of TonB from Escherichia coli reveals significant conformational changes compared to structures of smaller TonB fragments. J. Biol. Chem. 280:3022-3028. [DOI] [PubMed] [Google Scholar]
- 46.Kolberg, M., K. R. Strand, P. Graff, and K. K. Andersson. 2004. Structure, function, and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta 1699:1-34. [DOI] [PubMed] [Google Scholar]
- 47.Koo, M. S., J. H. Lee, S. Y. Rah, W. S. Yeo, J. W. Lee, K. L. Lee, Y. S. Koh, S. O. Kang, and J. H. Roe. 2003. A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J. 22:2614-2622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Kresse, W., I. Sekler, A. Hoffmann, O. Peters, C. Nolte, A. Moran, and H. Kettenmann. 2005. Zinc ions are endogenous modulators of neurotransmitter-stimulated capacitative Ca2+ entry in both cultured and in situ mouse astrocytes. Eur. J. Neurosci. 21:1626-1634. [DOI] [PubMed] [Google Scholar]
- 49.Lamark, T., I. Kaasen, M. W. Eshoo, P. Falkenberg, J. McDougall, and A. R. Strom. 1991. DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol. Microbiol. 5:1049-1064. [DOI] [PubMed] [Google Scholar]
- 50.Laskowska, E., A. Wawrzynow, and A. Taylor. 1996. IbpA and IbpB, the new heat-shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock. Biochimie 78:117-122. [DOI] [PubMed] [Google Scholar]
- 51.Lee, L. J., J. A. Barrett, and R. K. Poole. 2005. Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J. Bacteriol. 187:1124-1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Li, Z., and B. Demple. 1994. SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA. J. Biol. Chem. 269:18371-18377. [PubMed] [Google Scholar]
- 53.Lilic, M., H. Jovanovic, G. Jovanovic, and D. J. Savic. 2003. Identification of the CysB-regulated gene, hslJ, related to the Escherichia coli novobiocin resistance phenotype. FEMS Microbiol. Lett. 224:239-246. [DOI] [PubMed] [Google Scholar]
- 54.Liu, J., K. Duncan, and C. T. Walsh. 1989. Nucleotide sequence of a cluster of Escherichia coli enterobactin biosynthesis genes: identification of entA and purification of its product 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. J. Bacteriol. 171:791-798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Loiseau, L., S. Ollagnier-de-Choudens, L. Nachin, M. Fontecave, and F. Barras. 2003. Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J. Biol. Chem. 278:38352-38359. [DOI] [PubMed] [Google Scholar]
- 56.Mademidis, A., and W. Koster. 1998. Transport activity of FhuA, FhuC, FhuD, and FhuB derivatives in a system free of polar effects, and stoichiometry of components involved in ferrichrome uptake. Mol. Gen. Genet. 258:156-165. [DOI] [PubMed] [Google Scholar]
- 57.Maier, C., E. Bremer, A. Schmid, and R. Benz. 1988. Pore-forming activity of the Tsx protein from the outer membrane of Escherichia coli. Demonstration of a nucleoside-specific binding site. J. Biol. Chem. 263:2493-2499. [PubMed] [Google Scholar]
- 58.McCabe, M. J. J., S. A. Jiang, and S. Orrenius. 1993. Chelation of intracellular zinc triggers apoptosis in mature thymocytes. Lab. Investig. 69:101-110. [PubMed] [Google Scholar]
- 59.Meade, T. J., A. K. Taylor, and S. R. Bull. 2003. New magnetic resonance contrast agents as biochemical reporters. Curr. Opin. Neurobiol. 13:597-602. [DOI] [PubMed] [Google Scholar]
- 60.Merlin, C., M. Masters, S. McAteer, and A. Coulson. 2003. Why is carbonic anhydrase essential to Escherichia coli? J. Bacteriol. 185:6415-6424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Model, P., G. Jovanovic, and J. Dworkin. 1997. The Escherichia coli phage-shock-protein (psp) operon. Mol. Microbiol. 24:255-261. [DOI] [PubMed] [Google Scholar]
- 62.Muller, K., B. Matzanke, V. Schunemann, A. Trautwein, and K. Hantke. 1998. FhuF, an iron-regulated protein of Escherichia coli with a new type of [2Fe-2S] center. Eur. J. Biochem. 258:1001-1008. [DOI] [PubMed] [Google Scholar]
- 63.Nanamiya, H., G. Akanuma, Y. Natori, R. Murayama, S. Kosono, T. Kudo, K. Kobayashi, N. Ogasawara, S. M. Park, K. Ochi, and F. Kawamura. 2004. Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol. Microbiol. 52:273-283. [DOI] [PubMed] [Google Scholar]
- 64.Nasir, M. S., C. J. Fahrni, D. A. Suhy, K. J. Kolodsick, C. P. Singer, and T. V. O'Halloran. 1999. The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex. J. Biol. Inorg. Chem. 4:775-783. [DOI] [PubMed] [Google Scholar]
- 65.Nishino, K., and A. Yamaguchi. 2001. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183:5803-5812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Nobelmann, B., and J. W. Lengeler. 1996. Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J. Bacteriol. 178:6790-6795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Osborne, M. J., N. Siddiqui, D. Landgraf, P. J. Pomposiello, and K. Gehring. 2005. The solution structure of the oxidative stress-related protein YggX from Escherichia coli. Protein Sci. 14:1673-1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Outten, F. W., D. L. Huffman, J. A. Hale, and T. V. O'Halloran. 2001. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 276:30670-30677. [DOI] [PubMed] [Google Scholar]
- 69.Outten, F. W., M. J. Wood, F. M. Munoz, and G. Storz. 2003. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J. Biol. Chem. 278:45713-45719. [DOI] [PubMed] [Google Scholar]
- 70.Panina, E. M., A. A. Mironov, and M. S. Gelfand. 2003. Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc. Natl. Acad. Sci. USA 100:9912-9917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Parat, M. O., M. J. Richard, S. Pollet, C. Hadjur, A. Favier, and J. C. Beani. 1997. Zinc and DNA fragmentation in keratinocyte apoptosis: its inhibitory effect in UVB irradiated cells. J. Photochem. Photobiol. B 37:101-106. [DOI] [PubMed] [Google Scholar]
- 72.Patzer, S. I., and K. Hantke. 1999. SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli. J. Bacteriol. 181:3307-3309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Patzer, S. I., and K. Hantke. 1998. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol. Microbiol. 28:1199-1210. [DOI] [PubMed] [Google Scholar]
- 74.Petersen, C., and L. B. Moller. 2001. The RihA, RihB, and RihC ribonucleoside hydrolases of Escherichia coli. Substrate specificity, gene expression, and regulation. J. Biol. Chem. 276:884-894. [DOI] [PubMed] [Google Scholar]
- 75.Puskarova, A., P. Ferianc, J. Kormanec, D. Homerova, A. Farewell, and T. Nystrom. 2002. Regulation of yodA encoding a novel cadmium-induced protein in Escherichia coli. Microbiology 148:3801-3811. [DOI] [PubMed] [Google Scholar]
- 76.Rajagopalan, P. T. R., S. Grimme, and D. Pei. 2000. Characterization of cobalt(II)-substituted peptide deformylase: function of the metal ion and the catalytic residue Glu-133. Biochemistry 39:779-790. [DOI] [PubMed] [Google Scholar]
- 77.Reed, J. L., T. D. Vo, C. H. Schilling, and B. O. Palsson. 2003. An expanded genome scale model of Escherichia coli K-12. Genome Biol. 4:R54. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Rensing, C., B. Mitra, and B. P. Rosen. 1997. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 94:14326-14331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Segurado, M., R. Lopez-Aragon, J. A. Calera, J. M. Fernandez-Abalos, and F. Leal. 1999. Zinc-regulated biosynthesis of immunodominant antigens from Aspergillus spp. Infect. Immun. 67:2377-2382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Seve, M., A. Favier, M. Osman, D. Hernandez, G. Vaitaitis, N. C. Flores, J. M. McCord, and S. C. Flores. 1999. The human immunodeficiency virus-1 Tat protein increases cell proliferation, alters sensitivity to zinc chelator-induced apoptosis, and changes Sp1 DNA binding in HeLa cells. Arch. Biochem. Biophys. 361:165-172. [DOI] [PubMed] [Google Scholar]
- 81.Shumaker, D. K., L. R. Vann, M. W. Goldberg, T. D. Allen, and K. L. Wilson. 1998. TPEN, a Zn2+/Fe2+ chelator with low affinity for Ca2+, inhibits lamin assembly, destabilizes nuclear architecture and may independently protect nuclei from apoptosis in vitro. Cell Calcium 23:151-164. [DOI] [PubMed] [Google Scholar]
- 82.Smith, J. L. 2004. The physiological role of ferritin-like compounds in bacteria. Crit. Rev. Microbiol. 30:173-185. [DOI] [PubMed] [Google Scholar]
- 83.St. Croix, C. M., K. J. Wasserloos, K. E. Dineley, I. J. Reynolds, E. S. Levitan, and B. R. Pitt. 2002. Nitric oxide-induced changes in intracellular zinc homeostasis are mediated by metallothionein/thionein. Am. J. Physiol. Lung Cell Mol. Physiol. 282:L185-L192. [DOI] [PubMed] [Google Scholar]
- 84.Stephens, D. L., M. D. Choe, and C. F. Earhart. 1995. Escherichia coli periplasmic protein FepB binds ferrienterobactin. Microbiology 141:1647-1654. [DOI] [PubMed] [Google Scholar]
- 85.Stevenson, G., K. Andrianopoulos, M. Hobbs, and P. R. Reeves. 1996. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J. Bacteriol. 178:4885-4893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Stim-Herndon, K. P., T. M. Flores, and G. N. Bennett. 1996. Molecular characterization of adiY, a regulatory gene which affects expression of the biodegradative acid-induced arginine decarboxylase gene (adiA) of Escherichia coli. Microbiology 142:1311-1320. [DOI] [PubMed] [Google Scholar]
- 87.Tame, J. R., G. N. Murshudov, E. J. Dodson, T. K. Neil, G. G. Dodson, C. F. Higgins, and A. J. Wilkinson. 1994. The structural basis of sequence-independent peptide binding by OppA protein. Science 264:1578-1581. [DOI] [PubMed] [Google Scholar]
- 88.Taylor, K. M., H. E. Morgan, A. Johnson, L. J. Hadley, and R. I. Nicholson. 2003. Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Biochem. J. 375:51-59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Tseng, C. P., C. C. Yu, H. H. Lin, C. Y. Chang, and J. T. Kuo. 2001. Oxygen- and growth rate-dependent regulation of Escherichia coli fumarase (FumA, FumB, and FumC) activity. J. Bacteriol. 183:461-467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.van den Berg, W. A. M., W. R. Hagen, and W. M. A. M. van Dongen. 2000. The hybrid-cluster protein (‘prismane protein') from Escherichia coli: characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and [2Fe-2S]. Eur. J. Biochem. 267:666-676. [DOI] [PubMed] [Google Scholar]
- 91.Walsh, C. T., J. Liu, F. Rusnak, and M. Sakaitani. 1990. Molecular studies on enzymes in chorismate metabolism and the enterobactin biosynthetic pathway. Chem. Rev. 90:1105-1129. [Google Scholar]
- 92.Whipp, M. J., H. Camakaris, and A. J. Pittard. 1998. Cloning and analysis of the shiA gene, which encodes the shikimate transport system of Escherichia coli K-12. Gene 209:185-192. [DOI] [PubMed] [Google Scholar]
- 93.White, S., F. E. Tuttle, D. Blankenhorn, D. C. Dosch, and J. L. Slonczewski. 1992. pH dependence and gene structure of inaA in Escherichia coli. J. Bacteriol. 174:1537-1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Wubbolts, M., P. Terpstra, J. van Beilen, J. Kingma, H. Meesters, and B. Witholt. 1990. Variation of cofactor levels in Escherichia coli. Sequence analysis and expression of the pncB gene encoding nicotinic acid phosphoribosyltransferase. J. Biol. Chem. 265:17665-17672. [PubMed] [Google Scholar]
- 95.Yamamoto, K., and A. Ishihama. 2005. Transcriptional response of Escherichia coli to external copper. Mol. Microbiol. 56:215-225. [DOI] [PubMed] [Google Scholar]
- 96.Yamamoto, K., and A. Ishihama. 2005. Transcriptional response of Escherichia coli to external zinc. J. Bacteriol. 187:6333-6340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Zheng, M., and G. Storz. 2000. Redox sensing by prokaryotic transcription factors. Biochem. Pharmacol. 59:1-6. [DOI] [PubMed] [Google Scholar]