Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Oct;106(2):477–484. doi: 10.1104/pp.106.2.477

5' proximal regions of Arabidopsis nitrate reductase genes direct nitrate-induced transcription in transgenic tobacco.

Y Lin 1, C F Hwang 1, J B Brown 1, C L Cheng 1
PMCID: PMC159552  PMID: 7991680

Abstract

Nitrate reductase (NR) is the first enzyme in nitrate assimilation, a critical process for plant survival. The regulation of NR gene expression is complex, involving both internal and external factors. Of these, nitrate induction of NR gene expression has been studied most extensively and is well conserved among bacteria, fungi, and higher plants. We are interested in understanding the mechanism of nitrate induction of higher plant NR genes. Here we describe promoter analyses of the 5' flanking regions of the Arabidopsis NR genes, NR1 and NR2, with respect to nitrate induction of gene expression. To facilitate these analyses, a nitrate induction procedure using T1 transgenic tobacco plants was established. Approximately 1.5-kb 5' flanking regions of the two Arabidopsis NR genes (NR1 and NR2) were fused to a reporter gene and its expression in transgenic plants was analyzed. Deletion analyses of these regions show that 238- and 188-bp 5' flanking regions of the NR1 and NR2, respectively, contain sequences responsive to nitrate induction.

Full Text

The Full Text of this article is available as a PDF (707.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Back E., Dunne W., Schneiderbauer A., de Framond A., Rastogi R., Rothstein S. J. Isolation of the spinach nitrite reductase gene promoter which confers nitrate inducibility on GUS gene expression in transgenic tobacco. Plant Mol Biol. 1991 Jul;17(1):9–18. doi: 10.1007/BF00036801. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Caboche M., Rouzé P. Nitrate reductase: a target for molecular and cellular studies in higher plants. Trends Genet. 1990 Jun;6(6):187–192. doi: 10.1016/0168-9525(90)90175-6. [DOI] [PubMed] [Google Scholar]
  4. Cheng C. L., Acedo G. N., Cristinsin M., Conkling M. A. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1861–1864. doi: 10.1073/pnas.89.5.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng C. L., Acedo G. N., Dewdney J., Goodman H. M., Conkling M. A. Differential expression of the two Arabidopsis nitrate reductase genes. Plant Physiol. 1991 May;96(1):275–279. doi: 10.1104/pp.96.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fu Y. H., Marzluf G. A. nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5331–5335. doi: 10.1073/pnas.87.14.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gowri G., Campbell W. H. cDNA Clones for Corn Leaf NADH:Nitrate Reductase and Chloroplast NAD(P):Glyceraldehyde-3-Phosphate Dehydrogenase : Characterization of the Clones and Analysis of the Expression of the Genes in Leaves as Influenced by Nitrate in the Light and Dark. Plant Physiol. 1989 Jul;90(3):792–798. doi: 10.1104/pp.90.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lam E., Chua N. H. GT-1 binding site confers light responsive expression in transgenic tobacco. Science. 1990 Apr 27;248(4954):471–474. doi: 10.1126/science.2330508. [DOI] [PubMed] [Google Scholar]
  10. Lu J. L., Ertl J. R., Chen C. M. Cytokinin enhancement of the light induction of nitrate reductase transcript levels in etiolated barley leaves. Plant Mol Biol. 1990 Apr;14(4):585–594. doi: 10.1007/BF00027504. [DOI] [PubMed] [Google Scholar]
  11. Lu J. L., Ertl J. R., Chen C. M. Transcriptional regulation of nitrate reductase mRNA levels by cytokinin-abscisic Acid interactions in etiolated barley leaves. Plant Physiol. 1992 Apr;98(4):1255–1260. doi: 10.1104/pp.98.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pilgrim M. L., Caspar T., Quail P. H., McClung C. R. Circadian and light-regulated expression of nitrate reductase in Arabidopsis. Plant Mol Biol. 1993 Oct;23(2):349–364. doi: 10.1007/BF00029010. [DOI] [PubMed] [Google Scholar]
  13. Rajasekhar V. K., Gowri G., Campbell W. H. Phytochrome-mediated light regulation of nitrate reductase expression in squash cotyledons. Plant Physiol. 1988 Oct;88(2):242–244. doi: 10.1104/pp.88.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vaucheret H., Marion-Poll A., Meyer C., Faure J. D., Marin E., Caboche M. Interest in and limits to the utilization of reporter genes for the analysis of transcriptional regulation of nitrate reductase. Mol Gen Genet. 1992 Nov;235(2-3):259–268. doi: 10.1007/BF00279369. [DOI] [PubMed] [Google Scholar]
  15. Vincentz M., Caboche M. Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants. EMBO J. 1991 May;10(5):1027–1035. doi: 10.1002/j.1460-2075.1991.tb08041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vincentz M., Moureaux T., Leydecker M. T., Vaucheret H., Caboche M. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J. 1993 Feb;3(2):315–324. doi: 10.1111/j.1365-313x.1993.tb00183.x. [DOI] [PubMed] [Google Scholar]
  17. Warner R. L. Nitrate Utilization by Nitrate Reductase-deficient Barley Mutants. Plant Physiol. 1981 Apr;67(4):740–743. doi: 10.1104/pp.67.4.740. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES