Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Oct;106(2):521–528. doi: 10.1104/pp.106.2.521

Apple beta-galactosidase. Activity against cell wall polysaccharides and characterization of a related cDNA clone.

G S Ross 1, T Wegrzyn 1, E A MacRae 1, R J Redgwell 1
PMCID: PMC159557  PMID: 7991682

Abstract

A beta-galactosidase was purified from cortical tissue of ripe apples (Malus domestica Borkh. cv Granny Smith) using a procedure involving affinity chromatography on lactosyl-Sepharose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that two polypeptides of 44 and 32 kD were present in the fraction that showed activity against the synthetic substrate p-nitrophenol-beta-D-galactopyranoside. The enzyme preparation was incubated with polysaccharide extracts from apple cell walls containing beta-(1-->4)-linked galactans, and products of digestion were analyzed by gas chromatography. Small amounts of monomeric galactose were released during incubation, showing that the enzyme was active against native substrates. Amino acid sequence information was obtained from the purified protein, and this showed high homology with the anticipated polypeptide coded by the ethylene-regulated SR12 gene in carnation (K.G. Raghothama, K.A. Lawton, P.B. Goldborough, W.R. Woodson [1991] Plant Mol Biol 17: 61-71) and a harvest-related pTIP31 cDNA from asparagus (G. King, personal communication). Using the asparagus cDNA clone as a probe, an apple homolog (pABG1) was isolated. This clone contains a 2637-bp insert, including an open reading frame that codes for a polypeptide of 731 amino acids. Cleavage of an N-terminal signal sequence would leave a predicted polypeptide of 78.5 kD. Genomic DNA analysis and the isolation of other homologous apple clones suggest that pABG1 represents one member of an apple beta-galactosidase gene family. Northern analysis during fruit development and ripening showed accumulation of pABG1-homologous RNA during fruit ripening. Enzyme activity as measured in crude extracts increased during fruit development to a level that was maintained during ripening.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boedtker H., Frischauf A. M., Lehrach H. Isolation and translation of calvaria procollagen messenger ribonucleic acids. Biochemistry. 1976 Nov 2;15(22):4765–4770. doi: 10.1021/bi00667a003. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Giovannoni J. J., DellaPenna D., Bennett A. B., Fischer R. L. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell. 1989 Jan;1(1):53–63. doi: 10.1105/tpc.1.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. King G. A., Davies K. M. Identification, cDNA Cloning, and Analysis of mRNAs Having Altered Expression in Tips of Harvested Asparagus Spears. Plant Physiol. 1992 Dec;100(4):1661–1669. doi: 10.1104/pp.100.4.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Morreau H., Galjart N. J., Gillemans N., Willemsen R., van der Horst G. T., d'Azzo A. Alternative splicing of beta-galactosidase mRNA generates the classic lysosomal enzyme and a beta-galactosidase-related protein. J Biol Chem. 1989 Dec 5;264(34):20655–20663. [PubMed] [Google Scholar]
  7. Pressey R. beta-Galactosidases in Ripening Tomatoes. Plant Physiol. 1983 Jan;71(1):132–135. doi: 10.1104/pp.71.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Raghothama K. G., Lawton K. A., Goldsbrough P. B., Woodson W. R. Characterization of an ethylene-regulated flower senescence-related gene from carnation. Plant Mol Biol. 1991 Jul;17(1):61–71. doi: 10.1007/BF00036806. [DOI] [PubMed] [Google Scholar]
  9. Ranwala A. P., Suematsu C., Masuda H. The Role of beta-Galactosidases in the Modification of Cell Wall Components during Muskmelon Fruit Ripening. Plant Physiol. 1992 Nov;100(3):1318–1325. doi: 10.1104/pp.100.3.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sekimata M., Ogura K., Tsumuraya Y., Hashimoto Y., Yamamoto S. A beta-Galactosidase from Radish (Raphanus sativus L.) Seeds. Plant Physiol. 1989 Jun;90(2):567–574. doi: 10.1104/pp.90.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES