Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Oct;106(2):625–632. doi: 10.1104/pp.106.2.625

Purification and Characterization of Cinnamoyl-Coenzyme A:NADP Oxidoreductase in Eucalyptus gunnii.

D Goffner 1, M M Campbell 1, C Campargue 1, M Clastre 1, G Borderies 1, A Boudet 1, A M Boudet 1
PMCID: PMC159569  PMID: 12232355

Abstract

Cinnamoyl-coenzyme A:NADP oxidoreductase (CCR, EC 1.2.1.44), the entry-point enzyme into the monolignol biosynthetic pathway, was purified to apparent electrophoretic homogeneity from differentiating xylem of Eucalyptus gunnii Hook. The purified protein is a monomer of 38 kD and has an isoelectric point of 7. Although Eucalyptus gunnii CCR has approximately equal affinities for all possible substrates (p-coumaroyl-coenzyme A, feruloyl-coenzyme A, and sinapoyl-coenzyme A), it is approximately three times more effective at converting feruloyl-coenzyme A than the other substrates. To gain a better understanding of the catalytic regulation of Eucalyptus CCR, a variety of compounds were tested to determine their effect on CCR activity. CCR activity is inhibited by NADP and coenzyme A. Effectors that bind lysine and cysteine residues also inhibit CCR activity. As a prerequisite to the study of the regulation of CCR at the molecular level, polyclonal antibodies were obtained.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Chapple C. C., Vogt T., Ellis B. E., Somerville C. R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell. 1992 Nov;4(11):1413–1424. doi: 10.1105/tpc.4.11.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Grima-Pettenati J., Feuillet C., Goffner D., Borderies G., Boudet A. M. Molecular cloning and expression of a Eucalyptus gunnii cDNA clone encoding cinnamyl alcohol dehydrogenase. Plant Mol Biol. 1993 Mar;21(6):1085–1095. doi: 10.1007/BF00023605. [DOI] [PubMed] [Google Scholar]
  4. Gross G. G., Kreiten W. Reduction of coenzyme A thioesters of cinnamic acids with an enzyme preparation from lignifying tissue of Forsythia. FEBS Lett. 1975 Jun 15;54(2):259–262. doi: 10.1016/0014-5793(75)80087-1. [DOI] [PubMed] [Google Scholar]
  5. Hawkins S. W., Boudet A. M. Purification and Characterization of Cinnamyl Alcohol Dehydrogenase Isoforms from the Periderm of Eucalyptus gunnii Hook. Plant Physiol. 1994 Jan;104(1):75–84. doi: 10.1104/pp.104.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hibino T., Chen J. Q., Shibata D., Higuchi T. Nucleotide sequence of a Eucalyptus botryoides gene encoding cinnamyl alcohol dehydrogenase. Plant Physiol. 1994 Jan;104(1):305–306. doi: 10.1104/pp.104.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Knight M. E., Halpin C., Schuch W. Identification and characterisation of cDNA clones encoding cinnamyl alcohol dehydrogenase from tobacco. Plant Mol Biol. 1992 Aug;19(5):793–801. doi: 10.1007/BF00027075. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lindl T., Kreuzaler F., Hahlbrock K. Synthesis of p-coumaroyl coenzyme a with a partially purified p-coumarate:CoA ligase from cell suspension cultures of soybean (Glycine max). Biochim Biophys Acta. 1973 Apr 12;302(2):457–464. doi: 10.1016/0005-2744(73)90174-5. [DOI] [PubMed] [Google Scholar]
  10. Lüderitz T., Grisebach H. Enzymic synthesis of lignin precursors. Comparison of cinnamoyl-CoA reductase and cinnamyl alcohol:NADP+ dehydrogenase from spruce (Picea abies L.) and soybean (Glycine max L.). Eur J Biochem. 1981 Sep;119(1):115–124. doi: 10.1111/j.1432-1033.1981.tb05584.x. [DOI] [PubMed] [Google Scholar]
  11. O'malley D. M., Porter S., Sederoff R. R. Purification, Characterization, and Cloning of Cinnamyl Alcohol Dehydrogenase in Loblolly Pine (Pinus taeda L.). Plant Physiol. 1992 Apr;98(4):1364–1371. doi: 10.1104/pp.98.4.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Orr J. D., Lynn D. G. Biosynthesis of dehydrodiconiferyl alcohol glucosides: implications for the control of tobacco cell growth. Plant Physiol. 1992 Jan;98(1):343–352. doi: 10.1104/pp.98.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
  14. Sarni F., Grand C., Boudet A. M. Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus X euramericana). Eur J Biochem. 1984 Mar 1;139(2):259–265. doi: 10.1111/j.1432-1033.1984.tb08002.x. [DOI] [PubMed] [Google Scholar]
  15. Wengenmayer H., Ebel J., Grisebach H. Enzymic synthesis of lignin precursors. Purification and properties of a cinnamoyl-CoA: NADPH reductase from cell suspension cultures of soybean (Glycinemax). Eur J Biochem. 1976 Jun 1;65(2):529–536. doi: 10.1111/j.1432-1033.1976.tb10370.x. [DOI] [PubMed] [Google Scholar]
  16. Yang Z., Park H., Lacy G. H., Cramer C. L. Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes by wounding and pathogen challenge. Plant Cell. 1991 Apr;3(4):397–405. doi: 10.1105/tpc.3.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES