Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Oct;106(2):643–650. doi: 10.1104/pp.106.2.643

Purification and partial characterization of NADPH-cytochrome c reductase from Petunia hybrida flowers.

J G Menting 1, E Cornish 1, R K Scopes 1
PMCID: PMC159571  PMID: 7991686

Abstract

NADPH-cytochrome c reductase was solubilized from the microsomal fraction of Petunia hybrida flowers by 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate detergent and purified by adenosine 2',5'-bisphosphate-Sepharose chromatography, followed by high-performance anion-exchange chromatography. Two proteins with molecular sizes of 75 and 81 kD were detected in the purified preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Western blot analysis showed that both purified proteins cross-reacted with two different monoclonal antibodies raised against P. hybrida NADPH-cytochrome c reductase and rabbit anti-Jerusalem artichoke NADPH-cytochrome P450 reductase antibodies. Only one 84-kD protein was detected by western blot analysis of fresh microsomal extracts. Amino acid sequence analysis of tryptic peptides revealed significant similarity to the NADPH binding region of plant and animal NADPH-cytochrome P450 reductases and Bacillus megaterium cytochrome P450:NADPH-cytochrome P450 reductase. The pH optimum for reduction of ferricytochrome c was 7.4 and the Km values for the binding of NADPH and ferricytochrome c were 9.2 and 2.8 microM, respectively. We believe that the purified enzyme is a P. hybrida NADPH-cytochrome P450 reductase (EC 1.6.2.4).

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benveniste I., Gabriac B., Durst F. Purification and characterization of the NADPH-cytochrome P-450 (cytochrome c) reductase from higher-plant microsomal fraction. Biochem J. 1986 Apr 15;235(2):365–373. doi: 10.1042/bj2350365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benveniste I., Lesot A., Hasenfratz M. P., Durst F. Immunochemical characterization of NADPH-cytochrome P-450 reductase from Jerusalem artichoke and other higher plants. Biochem J. 1989 May 1;259(3):847–853. doi: 10.1042/bj2590847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benveniste I., Lesot A., Hasenfratz M. P., Kochs G., Durst F. Multiple forms of NADPH-cytochrome P450 reductase in higher plants. Biochem Biophys Res Commun. 1991 May 31;177(1):105–112. doi: 10.1016/0006-291x(91)91954-b. [DOI] [PubMed] [Google Scholar]
  4. Donaldson R. P., Luster D. G. Multiple forms of plant cytochromes p-450. Plant Physiol. 1991 Jul;96(3):669–674. doi: 10.1104/pp.96.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Galfre G., Howe S. C., Milstein C., Butcher G. W., Howard J. C. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977 Apr 7;266(5602):550–552. doi: 10.1038/266550a0. [DOI] [PubMed] [Google Scholar]
  6. Hasson E. P., West C. A. Properties of the System for the Mixed Function Oxidation of Kaurene and Kaurene Derivatives in Microsomes of the Immature Seed of Marah macrocarpus: Electron Transfer Components. Plant Physiol. 1976 Oct;58(4):479–484. doi: 10.1104/pp.58.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horibata K., Harris A. W. Mouse myelomas and lymphomas in culture. Exp Cell Res. 1970 Apr;60(1):61–77. doi: 10.1016/0014-4827(70)90489-1. [DOI] [PubMed] [Google Scholar]
  8. Houen G., Sandø T. Peptide mapping in sodium dodecyl sulfate-containing buffers: control of proteolytic cleavage by organic solvent. Anal Biochem. 1991 Mar 2;193(2):186–190. doi: 10.1016/0003-2697(91)90006-f. [DOI] [PubMed] [Google Scholar]
  9. Kochs G., Grisebach H. Phytoalexin synthesis in soybean: purification and reconstitution of cytochrome P450 3,9-dihydroxypterocarpan 6a-hydroxylase and separation from cytochrome P450 cinnamate 4-hydroxylase. Arch Biochem Biophys. 1989 Sep;273(2):543–553. doi: 10.1016/0003-9861(89)90514-6. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Larson R. L., Bussard J. B. Microsomal flavonoid 3'-monooxygenase from maize seedlings. Plant Physiol. 1986 Feb;80(2):483–486. doi: 10.1104/pp.80.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Madyastha K. M., Meehan T. D., Coscia C. J. Characterization of a cytochrome P-450 dependent monoterpene hydroxylase from the higher plant Vinca rosea. Biochemistry. 1976 Mar 9;15(5):1097–1102. doi: 10.1021/bi00650a023. [DOI] [PubMed] [Google Scholar]
  13. Menting JGT., Scopes R. K., Stevenson T. W. Characterization of Flavonoid 3[prime],5[prime]-Hydroxylase in Microsomal Membrane Fraction of Petunia hybrida Flowers. Plant Physiol. 1994 Oct;106(2):633–642. doi: 10.1104/pp.106.2.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Petersen M., Seitz H. U. Reconstitution of cytochrome P-450-dependent digitoxin 12 beta-hydroxylase from cell cultures of foxglove (Digitalis lanata EHRH.). Biochem J. 1988 Jun 1;252(2):537–543. doi: 10.1042/bj2520537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Porter T. D., Beck T. W., Kasper C. B. NADPH-cytochrome P-450 oxidoreductase gene organization correlates with structural domains of the protein. Biochemistry. 1990 Oct 23;29(42):9814–9818. doi: 10.1021/bi00494a009. [DOI] [PubMed] [Google Scholar]
  16. Rahier A., Taton M. The 14 alpha-demethylation of obtusifoliol by a cytochrome P-450 monooxygenase from higher plants' microsomes. Biochem Biophys Res Commun. 1986 Nov 14;140(3):1064–1072. doi: 10.1016/0006-291x(86)90743-6. [DOI] [PubMed] [Google Scholar]
  17. Riviere J. L., Cabanne F. Animal and plant cytochrome P-450 systems. Biochimie. 1987 Jun-Jul;69(6-7):743–752. doi: 10.1016/0300-9084(87)90195-7. [DOI] [PubMed] [Google Scholar]
  18. Sandermann H., Jr Plant metabolism of xenobiotics. Trends Biochem Sci. 1992 Feb;17(2):82–84. doi: 10.1016/0968-0004(92)90507-6. [DOI] [PubMed] [Google Scholar]
  19. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  20. Shet M. S., Sathasivan K., Arlotto M. A., Mehdy M. C., Estabrook R. W. Purification, characterization, and cDNA cloning of an NADPH-cytochrome P450 reductase from mung bean. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2890–2894. doi: 10.1073/pnas.90.7.2890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Soliday C. L., Kolattukudy P. E. Midchain hydroxylation of 16-hydroxypalmitic acid by the endoplasmic reticulum fraction from germinating Vicia faba. Arch Biochem Biophys. 1978 Jun;188(2):338–347. doi: 10.1016/s0003-9861(78)80018-6. [DOI] [PubMed] [Google Scholar]
  22. Stadler R., Zenk M. H. The purification and characterization of a unique cytochrome P-450 enzyme from Berberis stolonifera plant cell cultures. J Biol Chem. 1993 Jan 15;268(2):823–831. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES