Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Oct;106(2):747–754. doi: 10.1104/pp.106.2.747

Evidence for a Transient Association of New Proteins with the Spirulina maxima Phycobilisome in Relation to Light Intensity.

F Garnier 1, J P Dubacq 1, J C Thomas 1
PMCID: PMC159583  PMID: 12232367

Abstract

Environmental parameters are known to affect phycobilisomes. Variations of their structure and relative composition in phycobiliproteins have been observed. We studied the effect of irradiance variations on the phycobilisome structure in the cyanobacterium Spirulina maxima and discovered the appearance of new polypeptides associated with the phycobilisomes under an increased light intensity. In high light, the six rods of phycocyanin associated with the central core of allophycocyanin contained only one to two phycocyanin hexamers instead of the two to three they contained in low light. The concomitant disappearance of a 33-kD linker polypeptide was observed. Moreover, in high light three polypeptides of 29, 30, and 47 kD, clearly unrelated to linkers, were found to be associated with the phycobilisome fraction: protein labeling showed that a specific association of these polypeptides was induced by high light. One polypeptide, at least, would play the role of a chaperone protein. Not only the synthesis of these proteins, which appeared slightly increased in high light, but also their association with phycobilisome structure are light intensity dependent.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett A., Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol. 1973 Aug;58(2):419–435. doi: 10.1083/jcb.58.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cohen J., Cheng M. F. Role of vocalizations in the reproductive cycle of ring doves (Streptopelia risoria): effects of hypoglossal nerve section on the reproductive behavior and physiology of the female. Horm Behav. 1979 Oct;13(2):113–127. doi: 10.1016/0018-506x(79)90051-5. [DOI] [PubMed] [Google Scholar]
  3. Delepelaire P., Chua N. H. Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 degrees C: Characterizations of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci U S A. 1979 Jan;76(1):111–115. doi: 10.1073/pnas.76.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dilworth M. F., Gantt E. Phycobilisome-thylakoid Topography on Photosynthetically Active Vesicles of Porphyridium cruentum. Plant Physiol. 1981 Apr;67(4):608–612. doi: 10.1104/pp.67.4.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Glazer A. N., Williams R. C., Yamanaka G., Schachman H. K. Characterization of cyanobacterial phycobilisomes in zwitterionic detergents. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6162–6166. doi: 10.1073/pnas.76.12.6162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Isono T., Katoh T. Subparticles of Anabaena phycobilisomes. II. Molecular assembly of allophycocyanin cores in reference to "anchor" protein. Arch Biochem Biophys. 1987 Jul;256(1):317–324. doi: 10.1016/0003-9861(87)90452-8. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Maxson P., Sauer K., Zhou J. H., Bryant D. A., Glazer A. N. Spectroscopic studies of cyanobacterial phycobilisomes lacking core polypeptides. Biochim Biophys Acta. 1989 Oct 26;977(1):40–51. doi: 10.1016/s0005-2728(89)80007-6. [DOI] [PubMed] [Google Scholar]
  9. Raps S., Kycia J. H., Ledbetter M. C., Siegelman H. W. Light Intensity Adaptation and Phycobilisome Composition of Microcystis aeruginosa. Plant Physiol. 1985 Dec;79(4):983–987. doi: 10.1104/pp.79.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Redlinger T., Gantt E. A M(r) 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5542–5546. doi: 10.1073/pnas.79.18.5542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  12. Shiozawa J. A., Lottspeich F., Oesterhelt D., Feick R. The primary structure of the Chloroflexus aurantiacus reaction-center polypeptides. Eur J Biochem. 1989 Mar 1;180(1):75–84. doi: 10.1111/j.1432-1033.1989.tb14617.x. [DOI] [PubMed] [Google Scholar]
  13. de Lorimier R. M., Smith R. L., Stevens S. E. Regulation of phycobilisome structure and gene expression by light intensity. Plant Physiol. 1992 Mar;98(3):1003–1010. doi: 10.1104/pp.98.3.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. de Lorimier R., Bryant D. A., Stevens S. E., Jr Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide. Biochim Biophys Acta. 1990 Aug 9;1019(1):29–41. doi: 10.1016/0005-2728(90)90121-j. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES