Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Nov;106(3):957–961. doi: 10.1104/pp.106.3.957

Cyclic AMP stimulates K+ channel activity in mesophyll cells of Vicia faba L.

W Li 1, S Luan 1, S L Schreiber 1, S M Assmann 1
PMCID: PMC159618  PMID: 7529928

Abstract

Whole-cell patch-clamp recordings from Vicia faba mesophyll protoplasts reveal that outward K+ current is increased in a dose-dependent fashion by intracellular application of cAMP. The enhancement of the outward current by cAMP is specific and it cannot be mimicked by a series of nucleotides that includes AMP, cGMP, and GMP. The enhancement is evoked by micromolar concentrations of cAMP in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine. PKI or Walsh inhibitor, a specific peptide inhibitor of cAMP-dependent protein kinase (PKA), inhibits the outward K+ current. Adenosine 3',5'-phosphothioate, a competitive inhibitor of PKA, has a similar effect. Conversely, the catalytic subunit of PKA (cAMP independent) from bovine brain enhances the magnitude of the outward K+ current in the absence of added cAMP. Our results indicate that cAMP modulates K+ channel activity in mesophyll cells and suggest that this modulation occurs through a cAMP-regulated protein kinase.

Full Text

The Full Text of this article is available as a PDF (559.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkon D. L., Acosta-Urquidi J., Olds J., Kuzma G., Neary J. T. Protein kinase injection reduces voltage-dependent potassium currents. Science. 1983 Jan 21;219(4582):303–306. doi: 10.1126/science.6294830. [DOI] [PubMed] [Google Scholar]
  2. Carricarte V. C., Bianchini G. M., Muschietti J. P., Téllez-Iñn M. T., Perticari A., Torres N., Flawiá M. M. Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa). Biochem J. 1988 Feb 1;249(3):807–811. doi: 10.1042/bj2490807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delgado R., Hidalgo P., Diaz F., Latorre R., Labarca P. A cyclic AMP-activated K+ channel in Drosophila larval muscle is persistently activated in dunce. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):557–560. doi: 10.1073/pnas.88.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gerisch G. Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium. Annu Rev Biochem. 1987;56:853–879. doi: 10.1146/annurev.bi.56.070187.004225. [DOI] [PubMed] [Google Scholar]
  5. Hartzell H. C., Méry P. F., Fischmeister R., Szabo G. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature. 1991 Jun 13;351(6327):573–576. doi: 10.1038/351573a0. [DOI] [PubMed] [Google Scholar]
  6. Kemp B. E., Cheng H. C., Walsh D. A. Peptide inhibitors of cAMP-dependent protein kinase. Methods Enzymol. 1988;159:173–183. doi: 10.1016/0076-6879(88)59018-3. [DOI] [PubMed] [Google Scholar]
  7. Kume H., Takai A., Tokuno H., Tomita T. Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation. Nature. 1989 Sep 14;341(6238):152–154. doi: 10.1038/341152a0. [DOI] [PubMed] [Google Scholar]
  8. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1349–1355. doi: 10.1073/pnas.64.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lawton M. A., Yamamoto R. T., Hanks S. K., Lamb C. J. Molecular cloning of plant transcripts encoding protein kinase homologs. Proc Natl Acad Sci U S A. 1989 May;86(9):3140–3144. doi: 10.1073/pnas.86.9.3140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li W., Assmann S. M. Characterization of a G-protein-regulated outward K+ current in mesophyll cells of vicia faba L. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):262–266. doi: 10.1073/pnas.90.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li W., Luan S., Schreiber S. L., Assmann S. M. Evidence for protein phosphatase 1 and 2A regulation of K+ channels in two types of leaf cells. Plant Physiol. 1994 Nov;106(3):963–970. doi: 10.1104/pp.106.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin X., Watson J. C. cDNA Sequence of PsPK5, a Protein Kinase Homolog from Pisum sativum L. Plant Physiol. 1992 Oct;100(2):1072–1074. doi: 10.1104/pp.100.2.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schachtman D. P., Schroeder J. I., Lucas W. J., Anderson J. A., Gaber R. F. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science. 1992 Dec 4;258(5088):1654–1658. doi: 10.1126/science.8966547. [DOI] [PubMed] [Google Scholar]
  14. Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J. M., Gaymard F., Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science. 1992 May 1;256(5057):663–665. doi: 10.1126/science.1585180. [DOI] [PubMed] [Google Scholar]
  15. de Wit R. J., Hoppe J., Stec W. J., Baraniak J., Jastorff B. Interaction of cAMP derivatives with the 'stable' cAMP-binding site in the cAMP-dependent protein kinase type I. Eur J Biochem. 1982 Feb;122(1):95–99. doi: 10.1111/j.1432-1033.1982.tb05852.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES