Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Nov;106(3):1007–1014. doi: 10.1104/pp.106.3.1007

Ozone, Sulfur Dioxide, and Ultraviolet B Have Similar Effects on mRNA Accumulation of Antioxidant Genes in Nicotiana plumbaginifolia L.

H Willekens 1, W Van Camp 1, M Van Montagu 1, D Inze 1, C Langebartels 1, H Sandermann Jr 1
PMCID: PMC159625  PMID: 12232381

Abstract

We have studied the expression of antioxidant genes in response to near ambient conditions of O3, SO2, and ultraviolet B (UV-B) in Nicotiana plumbaginifolia L. The genes analyzed encode four different superoxide dismutases (SODs), three catalases (Cat1, Cat2, and Cat3), the cytosolic ascorbate peroxidase (cyt APx), and glutathione peroxidase (GPx). The experimental setup for each treatment was essentially the same and caused no visible damage, thus allowing direct comparison of the different stress responses. Our data showed that the effects of O3, SO2, and UV-B on the antioxidant genes are very similar, although the response to SO2 is generally less pronounced and delayed. The effects of the different stresses are characterized by a decline in Cat1, a moderate increase in Cat3, and a strong increase in Cat2 and GPx. Remarkably, SODs and cyt APx were not affected. Analysis of SOD and APx expression in the ozone-sensitive Nicotiana tabacum L. cv PBD6 revealed that induction of the cytosolic copper/zinc SOD and cyt APx occurs only with the onset of visible damage. It is proposed that alterations in mRNA levels of catalases and GPx, but not of SODs and cyt APx, form part of the initial antioxidant response to O3, SO2, and UV-B in Nicotiana.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowler C., Alliotte T., De Loose M., Van Montagu M., Inzé D. The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J. 1989 Jan;8(1):31–38. doi: 10.1002/j.1460-2075.1989.tb03345.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brederode F. T., Linthorst H. J., Bol J. F. Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol. 1991 Dec;17(6):1117–1125. doi: 10.1007/BF00028729. [DOI] [PubMed] [Google Scholar]
  3. Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
  4. Covello P. S., Chang A., Dumbroff E. B., Thompson J. E. Inhibition of Photosystem II Precedes Thylakoid Membrane Lipid Peroxidation in Bisulfite-Treated Leaves of Phaseolus vulgaris. Plant Physiol. 1989 Aug;90(4):1492–1497. doi: 10.1104/pp.90.4.1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Graham I. A., Leaver C. J., Smith S. M. Induction of Malate Synthase Gene Expression in Senescent and Detached Organs of Cucumber. Plant Cell. 1992 Mar;4(3):349–357. doi: 10.1105/tpc.4.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gupta A. S., Heinen J. L., Holaday A. S., Burke J. J., Allen R. D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629–1633. doi: 10.1073/pnas.90.4.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holland D., Ben-Hayyim G., Faltin Z., Camoin L., Strosberg A. D., Eshdat Y. Molecular characterization of salt-stress-associated protein in citrus: protein and cDNA sequence homology to mammalian glutathione peroxidases. Plant Mol Biol. 1993 Mar;21(5):923–927. doi: 10.1007/BF00027124. [DOI] [PubMed] [Google Scholar]
  8. Landry L. G., Pell E. J. Modification of Rubisco and Altered Proteolytic Activity in O3-Stressed Hybrid Poplar (Populus maximowizii x trichocarpa). Plant Physiol. 1993 Apr;101(4):1355–1362. doi: 10.1104/pp.101.4.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Langebartels C., Kerner K., Leonardi S., Schraudner M., Trost M., Heller W., Sandermann H. Biochemical plant responses to ozone : I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol. 1991 Mar;95(3):882–889. doi: 10.1104/pp.95.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McKersie B. D., Chen Y., de Beus M., Bowley S. R., Bowler C., Inzé D., D'Halluin K., Botterman J. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 1993 Dec;103(4):1155–1163. doi: 10.1104/pp.103.4.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pitcher L. H., Brennan E., Zilinskas B. A. The Antiozonant Ethylenediurea Does Not Act via Superoxide Dismutase Induction in Bean. Plant Physiol. 1992 Aug;99(4):1388–1392. doi: 10.1104/pp.99.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Prasad T. K., Anderson M. D., Martin B. A., Stewart C. R. Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen Peroxide. Plant Cell. 1994 Jan;6(1):65–74. doi: 10.1105/tpc.6.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schraudner M., Ernst D., Langebartels C., Sandermann H. Biochemical Plant Responses to Ozone : III. Activation of the Defense-Related Proteins beta-1,3-Glucanase and Chitinase in Tobacco Leaves. Plant Physiol. 1992 Aug;99(4):1321–1328. doi: 10.1104/pp.99.4.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tsang E. W., Bowler C., Hérouart D., Van Camp W., Villarroel R., Genetello C., Van Montagu M., Inzé D. Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell. 1991 Aug;3(8):783–792. doi: 10.1105/tpc.3.8.783. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES