Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Nov;106(3):1049–1055. doi: 10.1104/pp.106.3.1049

Induction of ethylene biosynthesis in Nicotiana tabacum by a Trichoderma viride xylanase is correlated to the accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase transcripts.

A Avni 1, B A Bailey 1, A K Mattoo 1, J D Anderson 1
PMCID: PMC159630  PMID: 7824643

Abstract

Xylanase (EIX) from the fungus Trichoderma viride elicits ethylene biosynthesis in leaf tissues of Nicotiana tabacum cv Xanthi but not in cv Hicks. The increase in ethylene biosynthesis is accompanied by an accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC), an increase in extractable ACC synthase activity, and increases in ACC synthase and ACC oxidase transcripts. Priming of increases in ACC synthase and ACC oxidase transcripts. Priming of leaves with ethylene (120 microL/L, 14 h) sensitizes the tissue, resulting in an enhanced response to EIX and increases in both the in vivo ACC oxidase activity and ACC oxidase transcript level. EIX and ethylene independently induce ACC oxidase. Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine is not accompanied by a reduction in ACC oxidase transcript level, indicating that ethylene biosynthesis is not required. In contrast to the differential induction of ethylene biosynthesis by EIX in Xanthi versus Hicks cultivars, both cultivars respond to a chemical stress (induced by CuSO4) by enhancing ethylene production. This induction is accompanied by an increase in ACC synthase transcript but not in that of ACC oxidase.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey B. A., Avni A., Li N., Mattoo A. K., Anderson J. D. Nucleotide Sequence of the Nicotiana tabacum cv Xanthi Gene Encoding 1-Aminocyclopropane-1-Carboxylate Synthase. Plant Physiol. 1992 Nov;100(3):1615–1616. doi: 10.1104/pp.100.3.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailey B. A., Korcak R. F., Anderson J. D. Alterations in Nicotiana tabacum L. cv Xanthi Cell Membrane Function following Treatment with an Ethylene Biosynthesis-Inducing Endoxylanase. Plant Physiol. 1992 Oct;100(2):749–755. doi: 10.1104/pp.100.2.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey B. A., Korcak R. F., Anderson J. D. Sensitivity to an Ethylene Biosynthesis-Inducing Endoxylanase in Nicotiana tabacum L. cv Xanthi Is Controlled by a Single Dominant Gene. Plant Physiol. 1993 Mar;101(3):1081–1088. doi: 10.1104/pp.101.3.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blein J. P., Milat M. L., Ricci P. Responses of Cultured Tobacco Cells to Cryptogein, a Proteinaceous Elicitor from Phytophthora cryptogea: Possible Plasmalemma Involvement. Plant Physiol. 1991 Feb;95(2):486–491. doi: 10.1104/pp.95.2.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Chalutz E., Mattoo A. K., Solomos T., Anderson J. D. Enhancement by ethylene of cellulysin-induced ethylene production by tobacco leaf discs. Plant Physiol. 1984 Jan;74(1):99–103. doi: 10.1104/pp.74.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Q., Boss W. F. Short-term treatment with cell wall degrading enzymes increases the activity of the inositol phospholipid kinases and the vanadate-sensitive ATPase of carrot cells. Plant Physiol. 1990 Dec;94(4):1820–1829. doi: 10.1104/pp.94.4.1820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  9. Holdsworth M. J., Bird C. R., Ray J., Schuch W., Grierson D. Structure and expression of an ethylene-related mRNA from tomato. Nucleic Acids Res. 1987 Jan 26;15(2):731–739. doi: 10.1093/nar/15.2.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huang P. L., Parks J. E., Rottmann W. H., Theologis A. Two genes encoding 1-aminocyclopropane-1-carboxylate synthase in zucchini (Cucurbita pepo) are clustered and similar but differentially regulated. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7021–7025. doi: 10.1073/pnas.88.16.7021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lizada M. C., Yang S. F. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem. 1979 Nov 15;100(1):140–145. doi: 10.1016/0003-2697(79)90123-4. [DOI] [PubMed] [Google Scholar]
  12. O'Neill S. D., Nadeau J. A., Zhang X. S., Bui A. Q., Halevy A. H. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell. 1993 Apr;5(4):419–432. doi: 10.1105/tpc.5.4.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roby D., Toppan A., Esquerré-Tugayé M. T. Cell Surfaces in Plant-Microorganism Interactions : VI. Elicitors of Ethylene from Colletotrichum lagenarium Trigger Chitinase Activity in Melon Plants. Plant Physiol. 1986 May;81(1):228–233. doi: 10.1104/pp.81.1.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sharon A., Bailey B. A., McMurtry J. P., Taylor R., Anderson J. D. Characteristics of ethylene biosynthesis-inducing xylanase movement in tobacco leaves. Plant Physiol. 1992 Dec;100(4):2059–2065. doi: 10.1104/pp.100.4.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sollner-Webb B., Reeder R. H. The nucleotide sequence of the initiation and termination sites for ribosomal RNA transcription in X. laevis. Cell. 1979 Oct;18(2):485–499. doi: 10.1016/0092-8674(79)90066-7. [DOI] [PubMed] [Google Scholar]
  16. Tang X., Wang H., Brandt A. S., Woodson W. R. Organization and structure of the 1-aminocyclopropane-1-carboxylate oxidase gene family from Petunia hybrida. Plant Mol Biol. 1993 Dec;23(6):1151–1164. doi: 10.1007/BF00042349. [DOI] [PubMed] [Google Scholar]
  17. Woodson W. R., Park K. Y., Drory A., Larsen P. B., Wang H. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers. Plant Physiol. 1992 Jun;99(2):526–532. doi: 10.1104/pp.99.2.526. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES